UMR168 – Laboratoire Physico-Chimie Curie

Publications de l’UMR 168

Année de publication : 2021

Tsai Feng-Ching, Simunovic Mijo, Sorre Benoit , Bertin Aurélie, Manzi John, Callan-Jones Andrew, Bassereau Patricia (2021 Apr 6)

Comparing physical mechanisms for membrane curvature-driven sorting of BAR-domain proteins

Soft Matter : DOI : 10.1039/D0SM01573C En savoir plus
Résumé

Protein enrichment at specific membrane locations in cells is crucial for many cellular functions. It is well-recognized that the ability of some proteins to sense membrane curvature contributes partly to their enrichment in highly curved cellular membranes. In the past, different theoretical models have been developed to reveal the physical mechanisms underlying curvature-driven protein sorting. This review aims to provide a detailed discussion of the two continuous models that are based on the Helfrich elasticity energy, (1) the spontaneous curvature model and (2) the curvature mismatch model. These two models are commonly applied to describe experimental observations of protein sorting. We discuss how they can be used to explain the curvature-induced sorting data of two BAR proteins, amphiphysin and centaurin. We further discuss how membrane rigidity, and consequently the membrane curvature generated by BAR proteins, could influence protein organization on the curved membranes. Finally, we address future directions in extending these models to describe some cellular phenomena involving protein sorting.

Replier
Stec Natalia, Doerfel Katja, Hills-Muckey Kelly, Ettorre Victoria, Ercan Sevinc, Keil Wolfgang, Hammell Christopher (2021 Feb 22)

An Epigenetic Priming Mechanism Mediated by Nutrient Sensing Regulates Transcriptional Output

Current Biology : 31 : 809-826.e6 : DOI : https://doi.org/10.1016/j.cub.2020.11.060 En savoir plus
Résumé

Replier

Année de publication : 2020

Abou-Ghali M, Kusters R, Körber S, Manzi J, Faix J, Sykes C, Plastino J (2020 Nov 6)

Capping protein is dispensable for polarized actin network growth and actin-based motility

Journal of Biological Chemistry : DOI : 10.1074/jbc.RA120.015009 En savoir plus
Résumé

Replier
Davidson PM, Battistella A, Déjardin T, Betz T, Plastino J, Cadot B, Borghi N, Sykes C (2020 Jul 3)

Nesprin-2 accumulates at the front of the nucleus during confined cell migration

EMBO Reports : DOI : 10.15252/embr.201949910 En savoir plus
Résumé

Replier
Allard A, Bouzid M, Betz T, Simon C, Abou-Ghali M, Lemière J, Valentino F, Manzi J, Brochard-Wyart F, Guevorkian K, Plastino J, Lenz M, Campillo C*, Sykes C* (2020 Apr 22)

Actin modulates shape and mechanics of tubular membranes

Science Advances : DOI : 10.1126/sciadv.aaz3050 En savoir plus
Résumé

Replier
Johnson Courtney R. , Steingesser Marc G., Khan Anum, Gladfelter Amy, Bertin Aurélie, McMurray Michael A. (2020 Jan 28)

Guanidine hydrochloride reactivates an ancient septin hetero-oligomer assembly pathway in budding yeast

eLife : eLife 2020;9:e54355 : DOI : DOI: 10.7554/eLife.54355 En savoir plus
Résumé

Septin proteins evolved from ancestral GTPases and co-assemble into hetero-oligomers and cytoskeletal filaments. In Saccharomyces cerevisiae, five septins comprise two species of hetero-octamers, Cdc11/Shs1–Cdc12–Cdc3–Cdc10–Cdc10–Cdc3–Cdc12–Cdc11/Shs1. Slow GTPase activity by Cdc12 directs the choice of incorporation of Cdc11 vs Shs1, but many septins, including Cdc3, lack GTPase activity. We serendipitously discovered that guanidine hydrochloride rescues septin function in cdc10 mutants by promoting assembly of non-native Cdc11/Shs1–Cdc12–Cdc3–Cdc3–Cdc12–Cdc11/Shs1 hexamers. We provide evidence that in S. cerevisiae Cdc3 guanidinium occupies the site of a ‘missing’ Arg side chain found in other fungal species where (i) the Cdc3 subunit is an active GTPase and (ii) Cdc10-less hexamers natively co-exist with octamers. We propose that guanidinium reactivates a latent septin assembly pathway that was suppressed during fungal evolution in order to restrict assembly to octamers. Since homodimerization by a GTPase-active human septin also creates hexamers that exclude Cdc10-like central subunits, our new mechanistic insights likely apply throughout phylogeny.

Replier

Année de publication : 2019

Kusters R, Simon C, Lopes Dos Santos R, Caorsi V, Wu S, Joanny JF, Sens P, Sykes C. (2019 Dec 4)

Actin shells control buckling and wrinkling of biomembranes

Soft Matter : 15 : 9647-9653 : DOI : 10.1039/c9sm01902b En savoir plus
Résumé

Replier
Julien Pernier, Remy Kusters, Hugo Bousquet, Thibaut Lagny, Antoine Morchain, Jean-François Joanny*, Patricia Bassereau*, Evelyne Coudrier* (2019 Nov 15)

Myosin 1b is an actin depolymerase.

Nature Communications : 10 : 5200 : DOI : 10.1038/s41467-019-13160-y En savoir plus
Résumé

The regulation of actin dynamics is essential for various cellular processes. Former evidence suggests a correlation between the function of non-conventional myosin motors and actin dynamics. Here we investigate the contribution of myosin 1b to actin dynamics using sliding motility assays. We observe that sliding on myosin 1b immobilized or bound to a fluid bilayer enhances actin depolymerization at the barbed end, while sliding on myosin II, although 5 times faster, has no effect. This work reveals a non-conventional myosin motor as another type of depolymerase and points to its singular interactions with the actin barbed end.

Replier
Mijo Simunovic, Emma Evergren, Andrew Callan-Jones*, Patricia Bassereau* (2019 Oct 7)

Curving Cells Inside and Out: Roles of BAR Domain Proteins in Membrane Shaping and Its Cellular Implications.

Annual Review of Cell and Developmental Biology : 35 : DOI : 10.1146/annurev-cellbio-100617-060558 En savoir plus
Résumé

Many cellular processes rely on precise and timely deformation of the cell membrane. While many proteins participate in membrane reshaping and scission, usually in highly specialized ways, Bin/amphiphysin/Rvs (BAR) domain proteins play a pervasive role, as they not only participate in many aspects of cell trafficking but also are highly versatile membrane remodelers. Subtle changes in the shape and size of the BAR domain can greatly impact the way in which BAR domain proteins interact with the membrane. Furthermore, the activity of BAR domain proteins can be tuned by external physical parameters, and so they behave differently depending on protein surface density, membrane tension, or membrane shape. These proteins can form 3D structures that mold the membrane and alter its liquid properties, even promoting scission under various circumstances. As such, BAR domain proteins have numerous roles within the cell. Endocytosis is among the most highly studied processes in which BAR domain proteins take on important roles. Over the years, a more complete picture has emerged in which BAR domain proteins are tied to almost all intracellular compartments; examples include endosomal sorting and tubular networks in the endoplasmic reticulum and T-tubules. These proteins also have a role in autophagy, and their activity has been linked with cancer. Here, we briefly review the history of BAR domain protein discovery, discuss the mechanisms by which BAR domain proteins induce curvature, and attempt to settle important controversies in the field. Finally, we review BAR domain proteins in the context of a cell, highlighting their emerging roles in cell signaling and organelle shaping.

Replier
Moitrier Sarah, Pricoupenko Nastassia, Kerjouan Adèle, Oddou Christiane, Destaing Olivier, Battistella Aude, Silberzan Pascal, Bonnet Isabelle (2019 Sep 3)

Local light-activation of the Src oncoprotein in an epithelial monolayer promotes collective extrusion

Communications Physics : 2 : 98 : DOI : 10.1038/s42005-019-0198-5 En savoir plus
Résumé

Transformed isolated cells are usually extruded from normal epithelia and subsequently eliminated. However, multicellular tumors outcompete healthy cells, highlighting the importance of collective effects. Here, we investigate this situation in vitro by controlling in space and time the activity of the Src oncoprotein within a normal Madin–Darby Canine Kidney (MDCK) epithelial cell monolayer. Using an optogenetics approach with cells expressing a synthetic light-sensitive version of Src (optoSrc), we reversibly trigger the oncogenic activity by exposing monolayers to well-defined light patterns. We show that small populations of activated optoSrc cells embedded in the non-transformed monolayer collectively extrude as a tridimensional aggregate and remain alive, while the surrounding normal cells migrate towards the exposed area. This phenomenon requires an interface between normal and transformed cells and is partially reversible. Traction forces show that Src- activated cells either actively extrude or are pushed out by the surrounding cells in a non- autonomous way.

Replier
Zack Jarin, Feng-Ching Tsai, Aram Davtyan, Alexander J.Pak, Patricia Bassereau, Gregory A.Voth (2019 Aug 6)

Unusual Organization of I-BAR Proteins on Tubular and Vesicular Membranes.

Biophysical Journal : 117 : 553-562 : DOI : 10.1016/j.bpj.2019.06.025 En savoir plus
Résumé

Protein-mediated membrane remodeling is a ubiquitous and critical process for proper cellular function. Inverse Bin/Amphiphysin/Rvs (I-BAR) domains drive local membrane deformation as a precursor to large-scale membrane remodeling. We employ a multiscale approach to provide the molecular mechanism of unusual I-BAR domain-driven membrane remodeling at a low protein surface concentration with near-atomistic detail. We generate a bottom-up coarse-grained model that demonstrates similar membrane-bound I-BAR domain aggregation behavior as our recent Mesoscopic Membrane with Explicit Proteins model. Together, these models bridge several length scales and reveal an aggregation behavior of I-BAR domains. We find that at low surface coverage (i.e., low bound protein density), I-BAR domains form transient, tip-to-tip strings on periodic flat membrane sheets. Inside of lipid bilayer tubules, we find linear aggregates parallel to the axis of the tubule. Finally, we find that I-BAR domains form tip-to-tip aggregates around the edges of membrane domes. These results are supported by in vitro experiments showing low curvature bulges surrounded by I-BAR domains on giant unilamellar vesicles. Overall, our models reveal new I-BAR domain aggregation behavior in membrane tubules and on the surface of vesicles at low surface concentration that add insight into how I-BAR domain proteins may contribute to certain aspects of membrane remodeling in cells.

Replier
Mathieu Richard, Carles Blanch-Mercader, Hajer Ennomani, Wenxiang Cao, Enrique M De La Cruz, Jean-François Joanny, Frank Jülicher, Laurent Blanchoin, Pascal Martin (2019 Jul 11)

Active cargo positioning in antiparallel transport networks.

Proceedings of the National Academy of Sciences of the United States of America : DOI : 10.1073/pnas.1900416116 En savoir plus
Résumé

Cytoskeletal filaments assemble into dense parallel, antiparallel, or disordered networks, providing a complex environment for active cargo transport and positioning by molecular motors. The interplay between the network architecture and intrinsic motor properties clearly affects transport properties but remains poorly understood. Here, by using surface micropatterns of actin polymerization, we investigate stochastic transport properties of colloidal beads in antiparallel networks of overlapping actin filaments. We found that 200-nm beads coated with myosin Va motors displayed directed movements toward positions where the net polarity of the actin network vanished, accumulating there. The bead distribution was dictated by the spatial profiles of local bead velocity and diffusion coefficient, indicating that a diffusion-drift process was at work. Remarkably, beads coated with heavy-mero-myosin II motors showed a similar behavior. However, although velocity gradients were steeper with myosin II, the much larger bead diffusion observed with this motor resulted in less precise positioning. Our observations are well described by a 3-state model, in which active beads locally sense the net polarity of the network by frequently detaching from and reattaching to the filaments. A stochastic sequence of processive runs and diffusive searches results in a biased random walk. The precision of bead positioning is set by the gradient of net actin polarity in the network and by the run length of the cargo in an attached state. Our results unveiled physical rules for cargo transport and positioning in networks of mixed polarity.

Replier
Nicola de Franceschi, Maryam Alqabandi, Winfried Weissenhorn, Patricia Bassereau (2019 Jul 5)

Dynamic and Sequential Protein Reconstitution on Negatively Curved Membranes by Giant Vesicles Fusion.

Bio-Protocol : 9 : e3294 : DOI : 10.21769/BioProtoc.3294 En savoir plus
Résumé

In vitro investigation of the interaction between proteins and positively curved membranes can be performed using a classic nanotube pulling method. However, characterizing protein interaction with negatively curved membranes still represents a formidable challenge. Here, we describe our recently developed approach based on laser-triggered Giant Unilamellar Vesicles (GUVs) fusion. Our protocol allows sequential addition of proteins to a negatively curved membrane, while at the same time controlling the buffer composition, lipid composition and membrane tension. Moreover, this method does not require a step of protein detachment, greatly simplifying the process of protein encapsulation over existing methods.

Replier
Elena Beltrán-Heredia, Feng-Ching Tsai, Samuel Salinas-Almaguer, Francisco J. Cao*, Patricia Bassereau*, Francisco Monroy* (2019 Jun 20)

Membrane curvature induces cardiolipin sorting.

Communications Biology : 2 : 225 : DOI : 10.1038/s42003-019-0471-x En savoir plus
Résumé

Cardiolipin is a cone-shaped lipid predominantly localized in curved membrane sites of bacteria and in the mitochondrial cristae. This specific localization has been argued to be geometry-driven, since the CL’s conical shape relaxes curvature frustration. Although previous evidence suggests a coupling between CL concentration and membrane shape in vivo, no precise experimental data are available for curvature-based CL sorting in vitro. Here, we test this hypothesis in experiments that isolate the effects of membrane curvature in lipid-bilayer nanotubes. CL sorting is observed with increasing tube curvature, reaching a maximum at optimal CL concentrations, a fact compatible with self-associative clustering. Observations are compatible with a model of membrane elasticity including van der Waals entropy, from which a negative intrinsic curvature of -1.1 nm-1 is predicted for CL. The results contribute to understanding the physicochemical interplay between membrane curvature and composition, providing key insights into mitochondrial and bacterial membrane organization and dynamics.

Replier
Mélanie Tobin, Atitheb Chaiyasitdhi, Vincent Michel, Nicolas Michalski, Pascal Martin (2019 Apr 2)

Stiffness and tension gradients of the hair cell’s tip-link complex in the mammalian cochlea.

eLife : DOI : 10.7554/eLife.43473 En savoir plus
Résumé

Sound analysis by the cochlea relies on frequency tuning of mechanosensory hair cells along a tonotopic axis. To clarify the underlying biophysical mechanism, we have investigated the micromechanical properties of the hair cell’s mechanoreceptive hair bundle within the apical half of the rat cochlea. We studied both inner and outer hair cells, which send nervous signals to the brain and amplify cochlear vibrations, respectively. We find that tonotopy is associated with gradients of stiffness and resting mechanical tension, with steeper gradients for outer hair cells, emphasizing the division of labor between the two hair-cell types. We demonstrate that tension in the tip links that convey force to the mechano-electrical transduction channels increases at reduced Ca. Finally, we reveal gradients in stiffness and tension at the level of a single tip link. We conclude that mechanical gradients of the tip-link complex may help specify the characteristic frequency of the hair cell.

Replier