UMR3244 – Dynamique de l’information génétique

Publications de l’équipe

Année de publication : 2019

Olivier Brison, Sami El-Hilali, Dana Azar, Stéphane Koundrioukoff, Mélanie Schmidt, Viola Nähse, Yan Jaszczyszyn, Anne-Marie Lachages, Bernard Dutrillaux, Claude Thermes, Michelle Debatisse, Chun-Long Chen (2019 Dec 15)

Transcription-mediated organization of the replication initiation program across large genes sets common fragile sites genome-wide.

Nature communications : 5693 : DOI : 10.1038/s41467-019-13674-5 En savoir plus
Résumé

Common fragile sites (CFSs) are chromosome regions prone to breakage upon replication stress known to drive chromosome rearrangements during oncogenesis. Most CFSs nest in large expressed genes, suggesting that transcription could elicit their instability; however, the underlying mechanisms remain elusive. Genome-wide replication timing analyses here show that stress-induced delayed/under-replication is the hallmark of CFSs. Extensive genome-wide analyses of nascent transcripts, replication origin positioning and fork directionality reveal that 80% of CFSs nest in large transcribed domains poor in initiation events, replicated by long-travelling forks. Forks that travel long in late S phase explains CFS replication features, whereas formation of sequence-dependent fork barriers or head-on transcription-replication conflicts do not. We further show that transcription inhibition during S phase, which suppresses transcription-replication encounters and prevents origin resetting, could not rescue CFS stability. Altogether, our results show that transcription-dependent suppression of initiation events delays replication of large gene bodies, committing them to instability.

Replier
Mireille Bétermier, Valérie Borde, Jean-Pierre de Villartay (2019 Dec 11)

Coupling DNA Damage and Repair: an Essential Safeguard during Programmed DNA Double-Strand Breaks?

Trends in cell biology : DOI : S0962-8924(19)30201-6 En savoir plus
Résumé

DNA double-strand breaks (DSBs) are the most toxic DNA lesions given their oncogenic potential. Nevertheless, programmed DSBs (prDSBs) contribute to several biological processes. Formation of prDSBs is the ‘price to pay’ to achieve these essential biological functions. Generated by domesticated PiggyBac transposases, prDSBs have been integrated in the life cycle of ciliates. Created by Spo11 during meiotic recombination, they constitute a driving force of evolution and ensure balanced chromosome content for successful reproduction. Produced by the RAG1/2 recombinase, they are required for the development of the adaptive immune system in many species. The coevolution of processes that couple introduction of prDSBs to their accurate repair may constitute an effective safeguard against genomic instability.

Replier
(2019 Nov 15)

Reference-free transcriptome exploration reveals novel RNAs for prostate cancer diagnosis.

Life Sci Alliance : DOI : 10.26508/lsa.201900449 En savoir plus
Résumé

The use of RNA-sequencing technologies held a promise of improved diagnostic tools based on comprehensive transcript sets. However, mining human transcriptome data for disease biomarkers in clinical specimens are restricted by the limited power of conventional reference-based protocols relying on unique and annotated transcripts. Here, we implemented a blind reference-free computational protocol, DE-kupl, to infer yet unreferenced RNA variations from total stranded RNA-sequencing datasets of tissue origin. As a bench test, this protocol was powered for detection of RNA subsequences embedded into putative long noncoding (lnc)RNAs expressed in prostate cancer. Through filtering of 1,179 candidates, we defined 21 lncRNAs that were further validated by NanoString for robust tumor-specific expression in 144 tissue specimens. Predictive modeling yielded a restricted probe panel enabling more than 90% of true-positive detections of cancer in an independent The Cancer Genome Atlas cohort. Remarkably, this clinical signature made of only nine unannotated lncRNAs largely outperformed PCA3, the only used prostate cancer lncRNA biomarker, in detection of high-risk tumors. This modular workflow is highly sensitive and can be applied to any pathology or clinical application.

Replier
Emilia Puig Lombardi, Allyson Holmes, Daniela Verga, Marie-Paule Teulade-Fichou, Alain Nicolas, Arturo Londoño-Vallejo (2019 Jul 9)

Thermodynamically stable and genetically unstable G-quadruplexes are depleted in genomes across species.

Nucleic acids research : 47 : 6098-6113 : DOI : 10.1093/nar/gkz463 En savoir plus
Résumé

G-quadruplexes play various roles in multiple biological processes, which can be positive when a G4 is involved in the regulation of gene expression or detrimental when the folding of a stable G4 impairs DNA replication promoting genome instability. This duality interrogates the significance of their presence within genomes. To address the potential biased evolution of G4 motifs, we analyzed their occurrence, features and polymorphisms in a large spectrum of species. We found extreme bias of the short-looped G4 motifs, which are the most thermodynamically stable in vitro and thus carry the highest folding potential in vivo. In the human genome, there is an over-representation of single-nucleotide-loop G4 motifs (G4-L1), which are highly conserved among humans and show a striking excess of the thermodynamically least stable G4-L1A (G3AG3AG3AG3) sequences. Functional assays in yeast showed that G4-L1A caused the lowest levels of both spontaneous and G4-ligand-induced instability. Analyses across 600 species revealed the depletion of the most stable G4-L1C/T quadruplexes in most genomes in favor of G4-L1A in vertebrates or G4-L1G in other eukaryotes. We discuss how these trends might be the result of species-specific mutagenic processes associated to a negative selection against the most stable motifs, thus neutralizing their detrimental effects on genome stability while preserving positive G4-associated biological roles.

Replier
Kevin Grosselin, Adeline Durand, Justine Marsolier, Adeline Poitou, Elisabetta Marangoni, Fariba Nemati, Ahmed Dahmani, Sonia Lameiras, Fabien Reyal, Olivia Frenoy, Yannick Pousse, Marcel Reichen, Adam Woolfe, Colin Brenan, Andrew D. Griffiths*, Céline Vallot* & Annabelle Gérard* (2019 May 31)

High-throughput single-cell ChIP-seq identifies heterogeneity of chromatin states in breast cancer

Nature Genetics : 1060–1066 : DOI : 10.1038/s41588-019-0424-9 En savoir plus
Résumé

Replier
(2019 May 1)

Long non-coding RNAs: towards urinary diagnosis for prostate cancer

Bulletin de l'Académie Nationale de Médecine : DOI : https://doi.org/10.1016/j.banm.2018.03.001 En savoir plus
Résumé

With nearly 54,000 new cases per year in France, prostate cancer is the most common cancer in men and is the third leading cause of cancer deaths. Nowadays, the early diagnosis of prostate cancer is done by a blood test of the Prostate Specific Antigen marker (PSA) and a digital rectal examination. However, the diagnosis is based on prostate biopsies that can be sources of infection (less than 5% risk) and can be negative in 55% of cases. The search for new, more robust markers is therefore necessary. High-throughput sequencing of the human genome and transcriptome combined with bioinformatics has completely changed understanding of the genome’s organization. Only 2% of the genome is transcribed into proteins-encoding mRNA, 66% into non-coding RNA, including long non-coding RNAs (lncRNAs). These RNA, of more than 200 nucleotides, are specific for a given cell or tissue and may have oncogenic or tumor suppressive functions. They can also be diagnostic and prognostic biomarkers and therapeutic targets in oncology. Among the different classes of lncRNA, the antisense transcripts (aslncRNA), encoded by the DNA strand complementary to that of a mRNA, are the least described. We have identified, by high-throughput sequencing, many non-annotated aslncRNAs, three of which were very significantly increased in prostate tumors compared to normal prostate tissues. This result has been validated by a hybridization technique (NanoString) on a cohort of 166 tumors and a preliminary study on urine from patients with prostate cancer seems very promising. Our purpose is to develop a specific, non-invasive, early, rapid and robust urinary test to diagnose prostate cancer or to direct patients to biopsies with much greater relevance.

Replier

Année de publication : 2018

Antoine Hocher, Myriam Ruault, Petra Kaferle, Marc Descrimes, Mickaël Garnier, Antonin Morillon, Angela Taddei (2018 Oct 26)

Expanding heterochromatin reveals discrete subtelomeric domains delimited by chromatin landscape transitions.

Genome research : DOI : gr.236554.118 En savoir plus
Résumé

The eukaryotic genome is divided into chromosomal domains of heterochromatin and euchromatin. Transcriptionally silent heterochromatin is found at subtelomeric regions, leading to the telomeric position effect (TPE) in yeast fly and human. Heterochromatin generally initiates and spreads from defined loci, and diverse mechanisms prevent the ectopic spread of heterochromatin into euchromatin. Here, we overexpressed the silencing factor Sir3 at varying levels in yeast and found that Sir3 spreads into Extended Silent Domains (ESDs), eventually reaching saturation at subtelomeres. We observed the spread of Sir3 into subtelomeric domains associated with specific histone marks in wild-type cells and stopping at zones of histone mark transitions including H3K79 tri-methylation levels. Our study shows that the conserved H3K79 methyltransferase Dot1 is essential in restricting Sir3 spread beyond ESDs, thus ensuring viability upon overexpression of Sir3. Lastly, our analyses of published data demonstrate how ESDs unveil uncharacterized discrete domains isolating structural and functional subtelomeric features from the rest of the genome. Our work offers a new approach on how to separate subtelomeres from the core chromosome.

Replier

Année de publication : 2017

Wery M, Gautier C, Descrimes M, Yoda M, Vennin-Rendos H, Migeot V, Gautheret D, Hermand D, Morillon A (2017 Nov 7)

Native Elongating Transcript Sequencing reveals global anti-correlation between sense and antisense nascent transcription in fission yeast

RNA : DOI : 10.1261/rna.063446.117 En savoir plus
Résumé

Antisense transcription can regulate sense gene expression. However, previous annotations of antisense transcription units have been based on detection of mature antisense long non-coding (aslnc)RNAs by RNA-Seq and/or micro-arrays, only giving a partial view of the antisense transcription landscape and incomplete molecular bases for antisense-mediated regulation. Here, we used Native Elongating Transcript sequencing to map genome-wide nascent antisense transcription in fission yeast. Strikingly, antisense transcription was detected for most protein-coding genes, correlating with low sense transcription, especially when overlapping the mRNA start site. RNA profiling revealed that the resulting aslncRNAs mainly correspond to cryptic Xrn1/Exo2-sensitive transcripts (XUTs). ChIP-Seq analyses showed that antisense (as)XUTs expression is associated with specific histone modifications patterns. Finally, we showed that asXUTs are controlled by the histone chaperone Spt6 and respond to meiosis induction, in both cases anti-correlating with levels of the paired-sense mRNAs, supporting physiological significance to antisense-mediated gene attenuation. Our work highlights that antisense transcription is much more extended than anticipated and might constitute an additional non-promoter determinant of gene regulation complexity.

Replier
Jarroux J, Morillon A, Pinskaya M. (2017 Oct 1)

History, Discovery, and Classification of lncRNAs

Adv Exp Med BiolLong non coding RNA biology : 1008 : 1-46 : DOI : 10.1007/978-981-10-5203-3_1 En savoir plus
Résumé

The RNA World Hypothesis suggests that prebiotic life revolved around RNA instead of DNA and proteins. Although modern cells have changed significantly in 4 billion years, RNA has maintained its central role in cell biology. Since the discovery of DNA at the end of the nineteenth century, RNA has been extensively studied. Many discoveries such as housekeeping RNAs (rRNA, tRNA, etc.) supported the messenger RNA model that is the pillar of the central dogma of molecular biology, which was first devised in the late 1950s. Thirty years later, the first regulatory non-coding RNAs (ncRNAs) were initially identified in bacteria and then in most eukaryotic organisms. A few long ncRNAs (lncRNAs) such as H19 and Xist were characterized in the pre-genomic era but remained exceptions until the early 2000s. Indeed, when the sequence of the human genome was published in 2001, studies showed that only about 1.2% encodes proteins, the rest being deemed « non-coding. » It was later shown that the genome is pervasively transcribed into many ncRNAs, but their functionality remained controversial. Since then, regulatory lncRNAs have been characterized in many species and were shown to be involved in processes such as development and pathologies, revealing a new layer of regulation in eukaryotic cells. This newly found focus on lncRNAs, together with the advent of high-throughput sequencing, was accompanied by the rapid discovery of many novel transcripts which were further characterized and classified according to specific transcript traits.In this review, we will discuss the many discoveries that led to the study of lncRNAs, from Friedrich Miescher’s « nuclein » in 1869 to the elucidation of the human genome and transcriptome in the early 2000s. We will then focus on the biological relevance during lncRNA evolution and describe their basic features as genes and transcripts. Finally, we will present a non-exhaustive catalogue of lncRNA classes, thus illustrating the vast complexity of eukaryotic transcriptomes

Replier
Dan Filipescu, Monica Naughtin, Katrina Podsypanina, Vincent Lejour, Laurence Wilson, Zachary A Gurard-Levin, Guillermo A Orsi, Iva Simeonova, Eleonore Toufektchan, Laura D Attardi, Franck Toledo, Geneviève Almouzni (2017 Mar 31)

Essential role for centromeric factors following p53 loss and oncogenic transformation.

Genes & development : 463-480 : DOI : 10.1101/gad.290924.116 En savoir plus
Résumé

In mammals, centromere definition involves the histone variant CENP-A (centromere protein A), deposited by its chaperone, HJURP (Holliday junction recognition protein). Alterations in this process impair chromosome segregation and genome stability, which are also compromised by p53 inactivation in cancer. Here we found that CENP-A and HJURP are transcriptionally up-regulated in p53-null human tumors. Using an established mouse embryonic fibroblast (MEF) model combining p53 inactivation with E1A or HRas-V12 oncogene expression, we reproduced a similar up-regulation of HJURP and CENP-A. We delineate functional CDE/CHR motifs within the Hjurp and Cenpa promoters and demonstrate their roles in p53-mediated repression. To assess the importance of HJURP up-regulation in transformed murine and human cells, we used a CRISPR/Cas9 approach. Remarkably, depletion of HJURP leads to distinct outcomes depending on their p53 status. Functional p53 elicits a cell cycle arrest response, whereas, in p53-null transformed cells, the absence of arrest enables the loss of HJURP to induce severe aneuploidy and, ultimately, apoptotic cell death. We thus tested the impact of HJURP depletion in pre-established allograft tumors in mice and revealed a major block of tumor progression in vivo. We discuss a model in which an « epigenetic addiction » to the HJURP chaperone represents an Achilles’ heel in p53-deficient transformed cells.

Replier
Boris Bardot, Franck Toledo (2017 Feb 24)

Targeting MDM4 Splicing in Cancers.

Genes : DOI : E82 En savoir plus
Résumé

MDM4, an essential negative regulator of the P53 tumor suppressor, is frequently overexpressed in cancer cells that harbor a wild-type P53. By a mechanism based on alternative splicing, the MDM4 gene generates two mutually exclusive isoforms: MDM4-FL, which encodes the full-length MDM4 protein, and a shorter splice variant called MDM4-S. Previous results suggested that the MDM4-S isoform could be an important driver of tumor development. In this short review, we discuss a recent set of data indicating that MDM4-S is more likely a passenger isoform during tumorigenesis and that targeting MDM4 splicing to prevent MDM4-FL protein expression appears as a promising strategy to reactivate p53 in cancer cells. The benefits and risks associated with this strategy are also discussed.

Replier
Eléonore Toufektchan, Sara Jaber, Franck Toledo (2017 Jan 26)

[Dangerous liaisons: p53, dyskeratosis congenita and Fanconi anemia].

Medecine sciences : M/S : 95-98 : DOI : 10.1051/medsci/20173301018 En savoir plus
Résumé

Replier
Bruno Teste, Jerome Champ, Arturo Londono-Vallejo, Stéphanie Descroix, Laurent Malaquin, Jean-Louis Viovy, Irena Draskovic, Guillaume Mottet (2017 Jan 17)

Chromatin immunoprecipitation in microfluidic droplets: towards fast and cheap analyses.

Lab on a chip : 530-537 : DOI : 10.1039/c6lc01535b En savoir plus
Résumé

Genetic organization is governed by the interaction of DNA with histone proteins, and differential modifications of these proteins is a fundamental mechanism of gene regulation. Histone modifications are primarily studied through chromatin immunoprecipitation (ChIP) assays, however conventional ChIP procedures are time consuming, laborious and require a large number of cells. Here we report for the first time the development of ChIP in droplets based on a microfluidic platform combining nanoliter droplets, magnetic beads (MB) and magnetic tweezers (MT). The droplet approach enabled compartmentalization and improved mixing, while reducing the consumption of samples and reagents in an integrated workflow. Anti-histone antibodies grafted to MB were used as a solid support to capture and transfer the target chromatin from droplets to droplets in order to perform chromatin immunoprecipitation, washing, elution and purification of DNA. We designed a new ChIP protocol to investigate four different types of modified histones with known roles in gene activation or repression. We evaluated the performances of this new ChIP in droplet assay in comparison with conventional methods. The proposed technology dramatically reduces analytical time from a few days to 7 hours, simplifies the ChIP protocol and decreases the number of cells required by 100 fold while maintaining a high degree of sensitivity and specificity. Therefore this droplet-based ChIP assay represents a new, highly advantageous and convenient approach to epigenetic analyses.

Replier
Yann Duroc, Rajeev Kumar, Lepakshi Ranjha, Céline Adam, Raphaël Guérois, Khan Md Muntaz, Marie-Claude Marsolier-Kergoat, Florent Dingli, Raphaëlle Laureau, Damarys Loew, Bertrand Llorente, Jean-Baptiste Charbonnier, Petr Cejka, Valérie Borde (2017 Jan 5)

Concerted action of the MutLβ heterodimer and Mer3 helicase regulates the global extent of meiotic gene conversion.

eLife : DOI : 10.7554/eLife.21900 En savoir plus
Résumé

Gene conversions resulting from meiotic recombination are critical in shaping genome diversification and evolution. How the extent of gene conversions is regulated is unknown. Here we show that the budding yeast mismatch repair related MutLβ complex, Mlh1-Mlh2, specifically interacts with the conserved meiotic Mer3 helicase, which recruits it to recombination hotspots, independently of mismatch recognition. This recruitment is essential to limit gene conversion tract lengths genome-wide, without affecting crossover formation. Contrary to expectations, Mer3 helicase activity, proposed to extend the displacement loop (D-loop) recombination intermediate, does not influence the length of gene conversion events, revealing non-catalytical roles of Mer3. In addition, both purified Mer3 and MutLβ preferentially recognize D-loops, providing a mechanism for limiting gene conversion in vivo. These findings show that MutLβ is an integral part of a new regulatory step of meiotic recombination, which has implications to prevent rapid allele fixation and hotspot erosion in populations.

Replier
Céline Vallot, Catherine Patrat, Amanda J Collier, Christophe Huret, Miguel Casanova, Tharvesh M Liyakat Ali, Matteo Tosolini, Nelly Frydman, Edith Heard, Peter J Rugg-Gunn, Claire Rougeulle (2017 Jan 5)

XACT Noncoding RNA Competes with XIST in the Control of X Chromosome Activity during Human Early Development.

Cell stem cell : 102-111 : DOI : 10.1016/j.stem.2016.10.014 En savoir plus
Résumé

Sex chromosome dosage compensation is essential in most metazoans, but the developmental timing and underlying mechanisms vary significantly, even among placental mammals. Here we identify human-specific mechanisms regulating X chromosome activity in early embryonic development. Single-cell RNA sequencing and imaging revealed co-activation and accumulation of the long noncoding RNAs (lncRNAs) XACT and XIST on active X chromosomes in both early human pre-implantation embryos and naive human embryonic stem cells. In these contexts, the XIST RNA adopts an unusual, highly dispersed organization, which may explain why it does not trigger X chromosome inactivation at this stage. Functional studies in transgenic mouse cells show that XACT influences XIST accumulation in cis. Our findings therefore suggest a mechanism involving antagonistic activity of XIST and XACT in controlling X chromosome activity in early human embryos, and they highlight the contribution of rapidly evolving lncRNAs to species-specific developmental mechanisms.

Replier