Programme de réplication et instabilité du génome

Publications de l’équipe

Année de publication : 2019

Brison O., EL-Hilali S., Azar D., Koundrioukoff S., Schmidt M., Naehse-Kumpf V., Jaszczyszyn Y., Lachages A.M., Dutrillaux B., Thermes C., Debatisse M., Chen C.L. (2019 Jul 1)

TRANSCRIPTION-MEDIATED ORGANIZATION OF THE REPLICATION INITIATION PROGRAM ACROSS LARGE GENES SETS UP COMMON FRAGILE SITES GENOME-WIDE

bioRxiv : 714717 : DOI : 10.1101/714717 En savoir plus
Résumé

Common Fragile Sites (CFSs) are chromosome regions prone to breakage under replication stress, known to drive chromosome rearrangements during oncogenesis. Most CFSs nest in large expressed genes, suggesting that transcription elicits their instability but the underlying mechanisms remained elusive. Analyses of genome-wide replication timing of human lymphoblasts here show that stress-induced delayed/under-replication is the hallmark of CFSs. Extensive genome-wide analyses of nascent transcripts, replication origin positioning and fork directionality reveal that 80% of CFSs nest in large transcribed domains poor in initiation events, thus replicated by long-traveling forks. In contrast to formation of sequence-dependent fork barriers or head-on transcription-replication conflicts, traveling-long in late S phase explains CFS replication features. We further show that transcription inhibition during the S phase, which excludes the setting of new replication origins, fails to rescue CFS stability. Altogether, results show that transcription-dependent suppression of initiation events delays replication of large gene body, committing them to instability.

Replier
Chakraborty A., Jenjaroenpun P., McCulley A., Li J., Hilali S.E., Haarer B., Hoffman E.A., Belak A., Thorland A., Hehnly H., Chen C.l., Kuznetsov V., Feng W. (2019 Jun 1)

Fragile X Mental Retardation Protein regulates R-loop formation and prevents global chromosome fragility

bioRxiv : 601906 : DOI : 10.1101/601906 En savoir plus
Résumé

Fragile X syndrome (FXS) is the most prevalent inherited intellectual disability caused by mutations in the Fragile X Mental Retardation gene (FMR1) and deficiency of its product, FMRP. FMRP is a predominantly cytoplasmic protein thought to bind specific mRNA targets and regulate protein translation. Its potential role in the nucleus is not well understood. We are interested in the global impact on chromosome stability due to FMRP loss. Here we report that compared to an FMRP-proficient normal cell line, cells derived from FXS patients exhibit increased chromosome breaks upon DNA replication stress induced by a DNA polymerase inhibitor, aphidicolin. Moreover, cells from FXS individuals fail to protect genomic regions containing R-loops (co-transcriptional DNA:RNA hybrids) from aphidicolin-induced chromosome breaks. We demonstrate that FMRP is important for abating R-loop accumulation during transcription, particularly in the context of head-on collision with a replication fork, and thereby preventing chromosome breakage. By identifying those FMRP-bound chromosomal loci with overlapping R-loops and fragile sites, we report a list of novel FMRP target loci, many of which have been implicated in neurological disorders. We show that cells from FXS patients have reduced expression of xenobiotics metabolic enzymes, suggesting defective xenobiotics metabolism/excretion might contribute to disease development. Our study provides new insights into the etiological basis of, and enables the discovery of new therapeutic targets for, the FXS.

Replier
Ming-Jun Shi, Xiang-Yu Meng, Philippe Lamy, A Rouf Banday, Jie Yang, Aura Moreno-Vega, Chun-Long Chen, Lars Dyrskjøt, Isabelle Bernard-Pierrot, Ludmila Prokunina-Olsson, François Radvanyi (2019 Apr 13)

APOBEC-mediated Mutagenesis as a Likely Cause of FGFR3 S249C Mutation Over-representation in Bladder Cancer.

European urology : 9-13 : DOI : S0302-2838(19)30261-1 En savoir plus
Résumé

FGFR3 is one of the most frequently mutated genes in bladder cancer and a driver of an oncogenic dependency. Here we report that only the most common recurrent FGFR3 mutation, S249C (TCC→TGC), represents an APOBEC-type motif and is probably caused by the APOBEC-mediated mutagenic process, accounting for its over-representation. We observed significant enrichment of the APOBEC mutational signature and overexpression of AID/APOBEC gene family members in bladder tumors with S249C compared to tumors with other recurrent FGFR3 mutations. Analysis of replication fork directionality suggests that the coding strand of FGFR3 is predominantly replicated as a lagging strand template that could favor the formation of hairpin structures, facilitating mutagenic activity of APOBEC enzymes. In vitro APOBEC deamination assays confirmed S249 as an APOBEC target. We also found that the FGFR3 S249C mutation was common in three other cancer types with an APOBEC mutational signature, but rare in urothelial tumors without APOBEC mutagenesis and in two diseases probably related to aging. PATIENT SUMMARY: We propose that APOBEC-mediated mutagenesis can generate clinically relevant driver mutations even within suboptimal motifs, such as in the case of FGFR3 S249C, one of the most common mutations in bladder cancer. Knowledge about the etiology of this mutation will improve our understanding of the molecular mechanisms of bladder cancer.

Replier

Année de publication : 2017

Klein K., Wang W., Borrman T., Chan S., Zhang D., Weng Z., Hastie A., Chen C., Gilbert D.M., Rhind N. (2017 Jan 1)

Genome-Wide Identification of Early-Firing Human Replication Origins by Optical Replication Mapping

bioRxiv : 214841 : DOI : 10.1101/214841 En savoir plus
Résumé

The timing of DNA replication is largely regulated by the location and timing of replication origin firing. Therefore, much effort has been invested in identifying and analyzing human replication origins. However, the heterogeneous nature of eukaryotic replication kinetics and the low efficiency of individual origins in metazoans has made mapping the location and timing of replication initiation in human cells difficult. We have mapped early-firing origins in HeLa cells using Optical Replication Mapping, a high-throughput single-molecule approach based on Bionano Genomics genomic mapping technology. The single-molecule nature and 290-fold coverage of our dataset allowed us to identify origins that fire with as little as 1% efficiency. We find sites of human replication initiation in early S phase are not confined to well-defined efficient replication origins, but are instead distributed across broad initiation zones consisting of many inefficient origins. These early-firing initiation zones co-localize with initiation zones inferred from Okazaki-fragment-mapping analysis and are enriched in ORC1 binding sites. Although most early-firing origins fire in early-replication regions of the genome, a significant number fire in late-replicating regions, suggesting that the major difference between origins in early and late replicating regions is their probability of firing in early S-phase, as opposed to qualitative differences in their firing-time distributions. This observation is consistent with stochastic models of origin timing regulation, which explain the regulation of replication timing in yeast.

Replier

Année de publication : 2016

Nataliya Petryk, Malik Kahli, Yves d'Aubenton-Carafa, Yan Jaszczyszyn, Yimin Shen, Maud Silvain, Claude Thermes, Chun-Long Chen, Olivier Hyrien (2016 Jan 12)

Replication landscape of the human genome.

Nature communications : 10208 : DOI : 10.1038/ncomms10208 En savoir plus
Résumé

Despite intense investigation, human replication origins and termini remain elusive. Existing data have shown strong discrepancies. Here we sequenced highly purified Okazaki fragments from two cell types and, for the first time, quantitated replication fork directionality and delineated initiation and termination zones genome-wide. Replication initiates stochastically, primarily within non-transcribed, broad (up to 150 kb) zones that often abut transcribed genes, and terminates dispersively between them. Replication fork progression is significantly co-oriented with the transcription. Initiation and termination zones are frequently contiguous, sometimes separated by regions of unidirectional replication. Initiation zones are enriched in open chromatin and enhancer marks, even when not flanked by genes, and often border ‘topologically associating domains’ (TADs). Initiation zones are enriched in origin recognition complex (ORC)-binding sites and better align to origins previously mapped using bubble-trap than λ-exonuclease. This novel panorama of replication reveals how chromatin and transcription modulate the initiation process to create cell-type-specific replication programs.

Replier

Année de publication : 2013

Olivier Hyrien, Aurélien Rappailles, Guillaume Guilbaud, Antoine Baker, Chun-Long Chen, Arach Goldar, Nataliya Petryk, Malik Kahli, Emilie Ma, Yves d'Aubenton-Carafa, Benjamin Audit, Claude Thermes, Alain Arneodo (2013 Oct 8)

From simple bacterial and archaeal replicons to replication N/U-domains.

Journal of molecular biology : 4673-89 : DOI : 10.1016/j.jmb.2013.09.021 En savoir plus
Résumé

The Replicon Theory proposed 50 years ago has proven to apply for replicons of the three domains of life. Here, we review our knowledge of genome organization into single and multiple replicons in bacteria, archaea and eukarya. Bacterial and archaeal replicator/initiator systems are quite specific and efficient, whereas eukaryotic replicons show degenerate specificity and efficiency, allowing for complex regulation of origin firing time. We expand on recent evidence that ~50% of the human genome is organized as ~1,500 megabase-sized replication domains with a characteristic parabolic (U-shaped) replication timing profile and linear (N-shaped) gradient of replication fork polarity. These N/U-domains correspond to self-interacting segments of the chromatin fiber bordered by open chromatin zones and replicate by cascades of origin firing initiating at their borders and propagating to their center, possibly by fork-stimulated initiation. The conserved occurrence of this replication pattern in the germline of mammals has resulted over evolutionary times in the formation of megabase-sized domains with an N-shaped nucleotide compositional skew profile due to replication-associated mutational asymmetries. Overall, these results reveal an evolutionarily conserved but developmentally plastic organization of replication that is driving mammalian genome evolution.

Replier

Année de publication : 2012

Benjamin Audit, Antoine Baker, Chun-Long Chen, Aurélien Rappailles, Guillaume Guilbaud, Hanna Julienne, Arach Goldar, Yves d'Aubenton-Carafa, Olivier Hyrien, Claude Thermes, Alain Arneodo (2012 Dec 15)

Multiscale analysis of genome-wide replication timing profiles using a wavelet-based signal-processing algorithm.

Nature protocols : 98-110 : DOI : 10.1038/nprot.2012.145 En savoir plus
Résumé

In this protocol, we describe the use of the LastWave open-source signal-processing command language (http://perso.ens-lyon.fr/benjamin.audit/LastWave/) for analyzing cellular DNA replication timing profiles. LastWave makes use of a multiscale, wavelet-based signal-processing algorithm that is based on a rigorous theoretical analysis linking timing profiles to fundamental features of the cell’s DNA replication program, such as the average replication fork polarity and the difference between replication origin density and termination site density. We describe the flow of signal-processing operations to obtain interactive visual analyses of DNA replication timing profiles. We focus on procedures for exploring the space-scale map of apparent replication speeds to detect peaks in the replication timing profiles that represent preferential replication initiation zones, and for delimiting U-shaped domains in the replication timing profile. In comparison with the generally adopted approach that involves genome segmentation into regions of constant timing separated by timing transition regions, the present protocol enables the recognition of more complex patterns of the spatio-temporal replication program and has a broader range of applications. Completing the full procedure should not take more than 1 h, although learning the basics of the program can take a few hours and achieving full proficiency in the use of the software may take days.

Replier
A Baker, C L Chen, H Julienne, B Audit, Y d'Aubenton-Carafa, C Thermes, A Arneodo (2012 Nov 27)

Linking the DNA strand asymmetry to the spatio-temporal replication program: II. Accounting for neighbor-dependent substitution rates.

The European physical journal. E, Soft matter : 123 : DOI : 10.1140/epje/i2012-12123-9 En savoir plus
Résumé

In paper I, we addressed the impact of the spatio-temporal program on the DNA composition evolution in the case of time homogeneous and neighbor-independent substitution rates. But substitution rates do depend on the flanking nucleotides as exemplified in vertebrates where CpG sites are hypermutable so that the substitution rate C –> T depends dramatically (ten fold) on whether the cytosine belongs to a CG dinucleotide or not. With the specific goal to account for neighbor-dependence, we revisit our minimal modeling of neutral substitution rates in the human genome. When assuming that r = CpG –> TpG and its reverse complement r(c) = CpG –> CpA are (by far) the main neighbor-dependent substitution rates, we demonstrate, using perturbative analysis, that neighbor-dependence does not affect the decomposition of the compositional asymmetry into a transcription- and a replication-associated components, the former increases in magnitude with transcription rate and changes sign with gene orientation, whereas the latter is proportional to the replication fork polarity. Indeed the neighbor dependence case differs from the neighbor-independent model by an additional source term related to the CG dinucleotide content in both the transcription and replication-associated components. We finally discuss the case of time-dependent substitution rates confirming as a very general result the fact that the skew can still be decomposed into a transcription- and a replication-associated components.

Replier
Benjamin Audit, Lamia Zaghloul, Antoine Baker, Alain Arneodo, Chun-Long Chen, Yves d'Aubenton-Carafa, Claude Thermes (2012 Nov 15)

Megabase replication domains along the human genome: relation to chromatin structure and genome organisation.

Sub-cellular biochemistry : 57-80 : DOI : 10.1007/978-94-007-4525-4_3 En savoir plus
Résumé

In higher eukaryotes, the absence of specific sequence motifs, marking the origins of replication has been a serious hindrance to the understanding of (i) the mechanisms that regulate the spatio-temporal replication program, and (ii) the links between origins activation, chromatin structure and transcription. In this chapter, we review the partitioning of the human genome into megabased-size replication domains delineated as N-shaped motifs in the strand compositional asymmetry profiles. They collectively span 28.3% of the genome and are bordered by more than 1,000 putative replication origins. We recapitulate the comparison of this partition of the human genome with high-resolution experimental data that confirms that replication domain borders are likely to be preferential replication initiation zones in the germline. In addition, we highlight the specific distribution of experimental and numerical chromatin marks along replication domains. Domain borders correspond to particular open chromatin regions, possibly encoded in the DNA sequence, and around which replication and transcription are highly coordinated. These regions also present a high evolutionary breakpoint density, suggesting that susceptibility to breakage might be linked to local open chromatin fiber state. Altogether, this chapter presents a compartmentalization of the human genome into replication domains that are landmarks of the human genome organization and are likely to play a key role in genome dynamics during evolution and in pathological situations.

Replier
A Baker, H Julienne, C L Chen, B Audit, Y d'Aubenton-Carafa, C Thermes, A Arneodo (2012 Sep 25)

Linking the DNA strand asymmetry to the spatio-temporal replication program. I. About the role of the replication fork polarity in genome evolution.

The European physical journal. E, Soft matter : 92 En savoir plus
Résumé

Two key cellular processes, namely transcription and replication, require the opening of the DNA double helix and act differently on the two DNA strands, generating different mutational patterns (mutational asymmetry) that may result, after long evolutionary time, in different nucleotide compositions on the two DNA strands (compositional asymmetry). We elaborate on the simplest model of neutral substitution rates that takes into account the strand asymmetries generated by the transcription and replication processes. Using perturbation theory, we then solve the time evolution of the DNA composition under strand-asymmetric substitution rates. In our minimal model, the compositional and substitutional asymmetries are predicted to decompose into a transcription- and a replication-associated components. The transcription-associated asymmetry increases in magnitude with transcription rate and changes sign with gene orientation while the replication-associated asymmetry is proportional to the replication fork polarity. These results are confirmed experimentally in the human genome, using substitution rates obtained by aligning the human and chimpanzee genomes using macaca and orangutan as outgroups, and replication fork polarity determined in the HeLa cell line as estimated from the derivative of the mean replication timing. When further investigating the dynamics of compositional skew evolution, we show that it is not at equilibrium yet and that its evolution is an extremely slow process with characteristic time scales of several hundred Myrs.

Replier
Antoine Baker, Benjamin Audit, Chun-Long Chen, Benoit Moindrot, Antoine Leleu, Guillaume Guilbaud, Aurélien Rappailles, Cédric Vaillant, Arach Goldar, Fabien Mongelard, Yves d'Aubenton-Carafa, Olivier Hyrien, Claude Thermes, Alain Arneodo (2012 Apr 13)

Replication fork polarity gradients revealed by megabase-sized U-shaped replication timing domains in human cell lines.

PLoS computational biology : e1002443 : DOI : 10.1371/journal.pcbi.1002443 En savoir plus
Résumé

In higher eukaryotes, replication program specification in different cell types remains to be fully understood. We show for seven human cell lines that about half of the genome is divided in domains that display a characteristic U-shaped replication timing profile with early initiation zones at borders and late replication at centers. Significant overlap is observed between U-domains of different cell lines and also with germline replication domains exhibiting a N-shaped nucleotide compositional skew. From the demonstration that the average fork polarity is directly reflected by both the compositional skew and the derivative of the replication timing profile, we argue that the fact that this derivative displays a N-shape in U-domains sustains the existence of large-scale gradients of replication fork polarity in somatic and germline cells. Analysis of chromatin interaction (Hi-C) and chromatin marker data reveals that U-domains correspond to high-order chromatin structural units. We discuss possible models for replication origin activation within U/N-domains. The compartmentalization of the genome into replication U/N-domains provides new insights on the organization of the replication program in the human genome.

Replier
Guillaume Guilbaud, Aurélien Rappailles, Antoine Baker, Chun-Long Chen, Alain Arneodo, Arach Goldar, Yves d'Aubenton-Carafa, Claude Thermes, Benjamin Audit, Olivier Hyrien (2012 Jan 6)

Evidence for sequential and increasing activation of replication origins along replication timing gradients in the human genome.

PLoS computational biology : e1002322 : DOI : 10.1371/journal.pcbi.1002322 En savoir plus
Résumé

Genome-wide replication timing studies have suggested that mammalian chromosomes consist of megabase-scale domains of coordinated origin firing separated by large originless transition regions. Here, we report a quantitative genome-wide analysis of DNA replication kinetics in several human cell types that contradicts this view. DNA combing in HeLa cells sorted into four temporal compartments of S phase shows that replication origins are spaced at 40 kb intervals and fire as small clusters whose synchrony increases during S phase and that replication fork velocity (mean 0.7 kb/min, maximum 2.0 kb/min) remains constant and narrowly distributed through S phase. However, multi-scale analysis of a genome-wide replication timing profile shows a broad distribution of replication timing gradients with practically no regions larger than 100 kb replicating at less than 2 kb/min. Therefore, HeLa cells lack large regions of unidirectional fork progression. Temporal transition regions are replicated by sequential activation of origins at a rate that increases during S phase and replication timing gradients are set by the delay and the spacing between successive origin firings rather than by the velocity of single forks. Activation of internal origins in a specific temporal transition region is directly demonstrated by DNA combing of the IGH locus in HeLa cells. Analysis of published origin maps in HeLa cells and published replication timing and DNA combing data in several other cell types corroborate these findings, with the interesting exception of embryonic stem cells where regions of unidirectional fork progression seem more abundant. These results can be explained if origins fire independently of each other but under the control of long-range chromatin structure, or if replication forks progressing from early origins stimulate initiation in nearby unreplicated DNA. These findings shed a new light on the replication timing program of mammalian genomes and provide a general model for their replication kinetics.

Replier

Année de publication : 2011

Marion Dubarry, Isabelle Loïodice, Chunlong L Chen, Claude Thermes, Angela Taddei (2011 Jul 5)

Tight protein-DNA interactions favor gene silencing.

Genes & development : 1365-70 : DOI : 10.1101/gad.611011 En savoir plus
Résumé

The heterochromatin-like structure formed by the yeast silent information regulator complex (SIR) represses transcription at the silent mating type loci and telomeres. Here, we report that tight protein-DNA complexes induce ectopic recruitment of the SIR complex, promoting gene silencing and changes in subnuclear localization when cis-acting elements are nearby. Importantly, lack of the replication fork-associated helicase Rrm3 enhances this induced gene repression. Additionally, Sir3 and Sir4 are enriched genome-wide at natural replication pause sites, including tRNA genes. Consistently, inserting a tRNA gene promotes SIR-mediated silencing of a nearby gene. These results reveal that replication stress arising from tight DNA-protein interactions favors heterochromatin formation.

Replier
Chun-Long Chen, Lauranne Duquenne, Benjamin Audit, Guillaume Guilbaud, Aurélien Rappailles, Antoine Baker, Maxime Huvet, Yves d'Aubenton-Carafa, Olivier Hyrien, Alain Arneodo, Claude Thermes (2011 Mar 4)

Replication-associated mutational asymmetry in the human genome.

Molecular biology and evolution : 2327-37 : DOI : 10.1093/molbev/msr056 En savoir plus
Résumé

During evolution, mutations occur at rates that can differ between the two DNA strands. In the human genome, nucleotide substitutions occur at different rates on the transcribed and non-transcribed strands that may result from transcription-coupled repair. These mutational asymmetries generate transcription-associated compositional skews. To date, the existence of such asymmetries associated with replication has not yet been established. Here, we compute the nucleotide substitution matrices around replication initiation zones identified as sharp peaks in replication timing profiles and associated with abrupt jumps in the compositional skew profile. We show that the substitution matrices computed in these regions fully explain the jumps in the compositional skew profile when crossing initiation zones. In intergenic regions, we observe mutational asymmetries measured as differences between complementary substitution rates; their sign changes when crossing initiation zones. These mutational asymmetries are unlikely to result from cryptic transcription but can be explained by a model based on replication errors and strand-biased repair. In transcribed regions, mutational asymmetries associated with replication superimpose on the previously described mutational asymmetries associated with transcription. We separate the substitution asymmetries associated with both mechanisms, which allows us to determine for the first time in eukaryotes, the mutational asymmetries associated with replication and to reevaluate those associated with transcription. Replication-associated mutational asymmetry may result from unequal rates of complementary base misincorporation by the DNA polymerases coupled with DNA mismatch repair (MMR) acting with different efficiencies on the leading and lagging strands. Replication, acting in germ line cells during long evolutionary times, contributed equally with transcription to produce the present abrupt jumps in the compositional skew. These results demonstrate that DNA replication is one of the major processes that shape human genome composition.

Replier

Année de publication : 2010

E L van Dijk, C L Chen, Y d'Aubenton-Carafa, S Gourvennec, M Kwapisz, V Roche, C Bertrand, M Silvain, P Legoix-Né, S Loeillet, A Nicolas, C Thermes, A Morillon (2010 Dec 31)

XUTs are a class of Xrn1-sensitive antisense regulatory non-coding RNA in yeast.

Nature : 114-7 : DOI : 10.1038/nature10118 En savoir plus
Résumé

Non-coding (nc)RNAs are key players in numerous biological processes such as gene regulation, chromatin domain formation and genome stability. Large ncRNAs interact with histone modifiers and are involved in cancer development, X-chromosome inactivation and autosomal gene imprinting. However, despite recent evidence showing that pervasive transcription is more widespread than previously thought, only a few examples mediating gene regulation in eukaryotes have been described. In Saccharomyces cerevisiae, the bona-fide regulatory ncRNAs are destabilized by the Xrn1 5′-3′ RNA exonuclease (also known as Kem1), but the genome-wide characterization of the entire regulatory ncRNA family remains elusive. Here, using strand-specific RNA sequencing (RNA-seq), we identify a novel class of 1,658 Xrn1-sensitive unstable transcripts (XUTs) in which 66% are antisense to open reading frames. These transcripts are polyadenylated and RNA polymerase II (RNAPII)-dependent. The majority of XUTs strongly accumulate in lithium-containing media, indicating that they might have a role in adaptive responses to changes in growth conditions. Notably, RNAPII chromatin immunoprecipitation followed by DNA sequencing (ChIP-seq) analysis of Xrn1-deficient strains revealed a significant decrease of RNAPII occupancy over 273 genes with antisense XUTs. These genes show an unusual bias for H3K4me3 marks and require the Set1 histone H3 lysine 4 methyl-transferase for silencing. Furthermore, abolishing H3K4me3 triggers the silencing of other genes with antisense XUTs, supporting a model in which H3K4me3 antagonizes antisense ncRNA repressive activity. Our results demonstrate that antisense ncRNA-mediated regulation is a general regulatory pathway for gene expression in S. cerevisiae.

Replier