UMR9187 / U1196 – Chimie et Modélisation pour la Biologie du Cancer (CMBC)

Publications de l’unité

Année de publication : 2020

Breton-Patient C., Naud-Martin D., Mahuteau-Betzer F., Piguel S. (2020 Oct 14)

Three-component C-H bond sulfonylation of imidazoheterocycles via visible-light organophotoredox catalysis.

European Journal of Organic Chemistry : Accepted Article : DOI : 10.1002/ejoc.202001219 En savoir plus
Résumé

The first entirely visible-light photoredox catalyzed sulfonylation of imidazoheterocycles has been developed. This transformation demonstrates an efficient C-H functionalization for the straightforward synthesis of novel C-3 sulfonylated imidazoheterocycles from various imidazopyridines and diaryliodonium salts with different electronic and steric properties and easy handled DABCO- bis (sulfur dioxide). The reaction proceeds in moderate to good yields under mild conditions at room temperature using the inexpensive organophotocatalyst EosinY.Na 2 and shows a high functional group tolerance (37 examples).

Replier
Marchand A., Beauvineau C., Teulade-Fichou M.P., Zenobi R. (2020 Oct 14)

Competition of ligands and the 18-mer binding domain of the RHAU helicase for G-quadruplexes – orthosteric or allosteric binding mechanism?

Chemistry – A European Journal : Accepted article : DOI : 10.1002/chem.202004040 En savoir plus
Résumé

Stabilizing particular DNA and RNA structures called G-quadruplexes (G4s) using specific ligands (L) is a strategy proposed to fight cancer. However, while G4:L interactions are often investigated, whether or not ligands are able to disrupt interactions between G4s and proteins (P) remains poorly studied. Here, using native mass spectrometry, we investigated ternary G4:L:P complexes formed by G4s, some of the highest affinity ligands, and the binding domain of the RHAU helicase. First, our results suggest that RHAU binds not only preferentially to parallel G4s but to free external G-quartets. We also found that, depending on the G4, ligands could prevent the binding of the peptide, either by direct competition for the binding sites (orthosteric inhibition) or by inducing conformational changes (allosteric inhibition). Notably, the ligand Cu-ttpy induced a conformational change that increased the binding of the peptide. This study illustrates that it is important to not only characterize drug-target interactions but also how the binding to other partners is affected.

Replier
Laura Mouton, Monica Ribeiro, Marc-André Mouthon, Fawzi Boumezbeur, Denis Le Bihan, Damien Ricard, François D. Boussin, Pierre Verrelle (2020 Sep 18)

Experimental and Preclinical Tools to Explore the Main Neurological Impacts of Brain Irradiation: Current Insights and Perspectives

Brain Tumors : 158 : 239-261 : DOI : 10.1007/978-1-0716-0856-2_11 En savoir plus
Résumé

Radiation therapy is a powerful tool in the treatment of primary and metastatic cancers of the brain. However, brain tissue tolerance is limited, and radiation doses must be tailored to minimize deleterious effects on the nervous system. Due to improved treatments, including radiotherapy techniques, many patients with brain tumors survive longer, but they experience late effects of radiotherapy, especially cognitive decline, for which no efficient treatment is currently available. Improving the prevention and treatment of radiation-induced neurological defects first needs to better characterize radiation injuries in brain cells and tissues. Rodent models have been widely used for this.

Here, observations from patients will be reviewed briefly as an introduction, mainly regarding clinical cognitive defects and anatomical alterations using magnetic resonance imaging (MRI). This limited descriptive clinical knowledge addresses many questions that arise in preclinical models regarding understanding the mechanism of radiation-induced brain dysfunction. From this perspective, we next present methods to characterize radiation-induced neurogenesis alterations in adult mice and then detail how MRI could be used as a powerful tool to explore these alterations.

Replier
Sandra Cunha Silveira, Géraldine Buhagiar‑Labarchède, Rosine Onclercq‑Delic, Simon Gemble, Elias Bou Samra, Hamza Mameri, Patricia Duchambon, Christelle Machon, Jérôme Guitton & Mounira Amor‑Guéret (2020 Aug 17)

A decrease in NAMPT activity impairs basal PARP-1 activity in cytidine deaminase deficient-cells, independently of NAD+

Scientific Reports : 10 : 13907 : DOI : 10.1038/s41598-020-70874-6 En savoir plus
Résumé

Cytidine deaminase (CDA) deficiency causes pyrimidine pool disequilibrium. We previously reported that the excess cellular dC and dCTP resulting from CDA deficiency jeopardizes genome stability, decreasing basal poly(ADP-ribose) polymerase 1 (PARP-1) activity and increasing ultrafine anaphase bridge (UFB) formation. Here, we investigated the mechanism underlying the decrease in PARP-1 activity in CDA-deficient cells. PARP-1 activity is dependent on intracellular NAD+ concentration. We therefore hypothesized that defects of the NAD+ salvage pathway might result in decreases in PARP-1 activity. We found that the inhibition or depletion of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the NAD+ salvage biosynthesis pathway, mimicked CDA deficiency, resulting in a decrease in basal PARP-1 activity, regardless of NAD+ levels. Furthermore, the expression of exogenous wild-type NAMPT fully restored basal PARP-1 activity and prevented the increase in UFB frequency in CDA-deficient cells. No such effect was observed with the catalytic mutant. Our findings demonstrate that (1) the inhibition of NAMPT activity in CDA-proficient cells lowers basal PARP-1 activity, and (2) the expression of exogenous wild-type NAMPT, but not of the catalytic mutant, fully restores basal PARP-1 activity in CDA-deficient cells; these results strongly suggest that basal PARP-1 activity in CDA-deficient cells decreases due to a reduction of NAMPT activity.

Replier
Paudel B.P., Moye A.L., Assi H.A., El-Khoury R., Cohen S.B., Birrento M.L., Samosorn S., Intharapichai K., Tomlinson C.G., Teulade-Fichou M.P., González C., Beck J.L., Damha M.J., van Oijen A.M., Bryan T.M. (2020 Jul 29)

A mechanism for the extension and unfolding of parallel telomeric G-quadruplexes by human telomerase at single-molecule resolution

eLife : 9 : e56428 : DOI : 10.7554/eLife.56428 En savoir plus
Résumé

Telomeric G-quadruplexes (G4) were long believed to form a protective structure at telomeres, preventing their extension by the ribonucleoprotein telomerase. Contrary to this belief, we have previously demonstrated that parallel-stranded conformations of telomeric G4 can be extended by human and ciliate telomerase. However, a mechanistic understanding of the interaction of telomerase with structured DNA remained elusive. Here, we use single-molecule fluorescence resonance energy transfer (smFRET) microscopy and bulk-phase enzymology to propose a mechanism for the resolution and extension of parallel G4 by telomerase. Binding is initiated by the RNA template of telomerase interacting with the G-quadruplex; nucleotide addition then proceeds to the end of the RNA template. It is only through the large conformational change of translocation following synthesis that the G-quadruplex structure is completely unfolded to a linear product. Surprisingly, parallel G4 stabilization with either small molecule ligands or by chemical modification does not always inhibit G4 unfolding and extension by telomerase. These data reveal that telomerase is a parallel G-quadruplex resolvase.

Replier
Leandro H. Zucolotto Cocca, Luis M. G. Abegão, Lucas F. Sciuti, Roxane Vabre, Jonathas de Paula Siqueira, Kenji Kamada, Cleber R. Mendonca, Sandrine Piguel, and Leonardo De Boni (2020 Jun 11)

Two-Photon Emissive Dyes Based on Push–Pull Purines Derivatives: Toward the Development of New Photoluminescence Bioprobes

The Journal of Physical Chemistry C : 124 : 12185-12864 : DOI : 10.1021/acs.jpcc.0c01859 En savoir plus
Résumé

Two-Photon Emissive Dyes Based on Push–Pull Purines Derivatives: Toward the Development of New Photoluminescence BioprobesFluorescent organic molecules have received great attention due to their largest applications, for example, in DNA and RNA spectroscopies studies, development of new photoluminescence bioprobes, and applications in fluorescence spectroscopy. In specific, purine base analog molecules present high fluorescence quantum yields and significant Stokes shift. Furthermore, the addition of push–pull structures at the purine core could increase the photoluminescence properties, making candidates for photoluminescence bioprobes. To consider this, a complete spectroscopic study was performed on nine push–pull purines, distinguished by different push–pull structures. In specific, for this research, the two-photon absorption (2PA) study showed that the compounds present induced two-photon fluorescence at the therapeutic window, desired for fluorescence microscopy. The brightness property was evaluated, indicating that all chromospheres are fluorescent by a 2PA process. Additionally, ultrafast transient absorption was performed to elucidate contribution of the excited states on the 2PA spectra, and quantum chemistry calculations were performed to corroborate the experimental results.

Replier
Mathieu E., Bernard A.S., Quévrain E., Zoumpoulaki M., Iriart S., Lung-Soong C., Lai B., Medjoubi K., Henry L., Nagarajan S., Poyer F., Scheitler A., Ivanovic-Burmazovic I., Marco S., somogyi a., Seksik P., Delsuc N., Policar C. (2020 May 29)

Intracellular location matters: rationalization of the anti-inflammatory activity of a manganese (II) superoxide dismutase mimic complex

Chem. Commun. : 56 : 7885-7888 : DOI : 10.1039/D0CC03398G En savoir plus
Résumé

Intracellular location matters

A conjugate of a Mn-based superoxide dismutase mimic with a Re-based multimodal probe was studied in a cellular model of oxidative stress. Its speciation was questioned using Re and Mn X-fluorescence. Its distribution were compared to its unconjugated analogue. Interestingly, their similar activities mirror their similar concentrations in mitochondria.

Replier
Stéphanie Lemaître, Florent Poyer, Paul Fréneaux, Sophie Leboucher, François Doz, Nathalie Cassoux, Carole D Thomas (2020 May 1)

Low retinal toxicity of intravitreal carboplatin associated with good retinal tumor control in transgenic murine retinoblastoma.

Clinical & experimental ophthalmology : 48 : 500-511 : DOI : 10.1111/ceo.13711 En savoir plus
Résumé

Background: Retinoblastoma is a rare intraocular malignancy in children. Current treatments have many adverse effects. New therapeutic approaches like intravitreal injections of chemotherapies are currently being developed but their toxicities need to be evaluated on animal models. This study compares the efficacy and toxicity of intravitreal melphalan, topotecan and carboplatin, alone or in combination (sequential administration), in the LHBetaTag retinoblastoma mice.

Methods: Mice were divided into 9 groups: control, carboplatin 1.5 and 4μg, melphalan 0.1 and 1μg, topotecan 0.1 and 1μg, carboplatin 4μg/ topotecan 0.1μg and melphalan 1μg/ topotecan 0.1μg. The follow‐up was performed using fundus imaging and optical coherence tomography combined with histopathological analysis. Absence of tumor and presence of calcified tumors were the criteria for therapeutic response assessment. Ocular complications were assessed after 4 weekly injections. Retinal toxicity was defined by the decrease of retinal thickness and of the number of retinal layers.

Results: Topotecan was inactive on retinal tumors. Melphalan (1μg) led to a complete tumor control in 91.7% of eyes. Carboplatin strongly decreased the tumor burden (85.7‐93.8% of eyes without retinal tumor). The intravitreal injection itself led to ocular complications (25% of media opacities and 45.7% of retinal detachment). Only melphalan at 1μg showed a strong retinal toxicity. The two combinations showed a good efficacy in reducing the number of eyes with retinal tumors with a reduced retinal toxicity.

Conclusions: This preclinical study suggests that intravitreal injection of carboplatin has a low toxicity and could be evaluated in clinical practice to treat patients suffering from retinoblastoma.

Replier
Rahima Chennoufi, Ngoc-Duong Trinh, Françoise Simon, Guillaume Bordeau, Delphine Naud-Martin, Albert Moussaron, Bertrand Cinquin, Houcine Bougherara, Béatrice Rambaud, Patrick Tauc, Céline Frochot, Marie-Paule Teulade-Fichou, Florence Mahuteau-Betzer & Eric Deprez (2020 Apr 23)

Interplay between cellular uptake, intracellular localization and the cell death mechanism in triphenylamine-mediated photoinduced cell death

Scientific Reports : 10 : 6881 : DOI : 10.1038/s41598-020-63991-9 En savoir plus
Résumé

Triphenylamines (TPAs) were previously shown to trigger cell death under prolonged one- or two-photon illumination. Their initial subcellular localization, before prolonged illumination, is exclusively cytoplasmic and they translocate to the nucleus upon photoactivation. However, depending on their structure, they display significant differences in terms of precise initial localization and subsequent photoinduced cell death mechanism. Here, we investigated the structural features of TPAs that influence cell death by studying a series of molecules differing by the number and chemical nature of vinyl branches. All compounds triggered cell death upon one-photon excitation, however to different extents, the nature of the electron acceptor group being determinant for the overall cell death efficiency. Photobleaching susceptibility was also an important parameter for discriminating efficient/inefficient compounds in two-photon experiments. Furthermore, the number of branches, but not their chemical nature, was crucial for determining the cellular uptake mechanism of TPAs and their intracellular fate. The uptake of all TPAs is an active endocytic process but two- and three-branch compounds are taken up via distinct endocytosis pathways, clathrin-dependent or -independent (predominantly caveolae-dependent), respectively. Two-branch TPAs preferentially target mitochondria and photoinduce both apoptosis and a proper necrotic process, whereas three-branch TPAs preferentially target late endosomes and photoinduce apoptosis only.

Replier
Michela Zuffo, Aurélie Gandolfini, Brahim Heddi, Anton Granzhan (2020 Apr 20)

Harnessing intrinsic fluorescence for typing of secondary structures of DNA

Nucleic Acids Research : 48 : e61 : DOI : 10.1093/nar/gkaa257 En savoir plus
Résumé

GA-NAR-2020

High-throughput investigation of structural diversity of nucleic acids is hampered by the lack of suitable label-free methods, combining fast and cheap experimental workflow with high information content. Here, we explore the use of intrinsic fluorescence emitted by nucleic acids for this scope. After a preliminary assessment of suitability of this phenomenon for tracking conformational changes of DNA, we examined steady-state emission spectra of an 89-membered set of oligonucleotides with reported conformation (G-quadruplexes (G4s), i-motifs, single- and double-strands) by means of multivariate analysis. Principal component analysis of emission spectra resulted in successful clustering of oligonucleotides into three corresponding conformational groups, without discrimination between single- and double-stranded structures. Linear discriminant analysis was exploited for the assessment of novel sequences, allowing the evaluation of their G4-forming propensity. Our method does not require any labeling agent or dye, avoiding the related bias, and can be utilized to screen novel sequences of interest in a high-throughput and cost-effective manner. In addition, we observed that left-handed (Z-) G4 structures were systematically more fluorescent than most other G4 structures, almost reaching the quantum yield of 5′-d[(G3T)3G3]-3′ (G3T, the most fluorescent G4 structure reported to date).

Replier
Julie Le Bescont, Chloé Breton‐Patient et Sandrine Piguel (2020 Apr 16)

Unconventional Reactivity with DABCO-Bis(sulfur dioxide): C–H Bond Sulfenylation of Imidazopyridines

European Journal of Organic Chemistry : 2020 : 2101-2109 : DOI : 10.1002/ejoc.202000112 En savoir plus
Résumé

Exploring the unexpected reactivity of DABCO‐bis(sulfur dioxide) on various imidazo[1,2‐a ]pyridines expanded the toolbox of the sulfenylation reagent. Starting from three simple building blocks, this three‐component transformation led to various C‐3 sulfenylated substituted imidazo[1,2‐a ]pyridines in moderate to good yields.
Exploring the unexpected reactivity of DABCO‐bis(sulfur dioxide) on various imidazo[1,2‐a ]pyridines expanded the toolbox of the sulfenylation reagent. Starting from three simple building blocks, this three‐component transformation led to various C‐3 sulfenylated substituted imidazo[1,2‐a ]pyridines in moderate to good yields.

This work highlights the unexpected and unprecedented outcome of the reactivity with DABCO‐bis(sulfur dioxide). The use of this reagent led to the exclusive introduction of a sulfur atom on the C‐3 position of imidazopyridines instead of a sulfone group. The reaction methodology turned out to be robust, scalable and suitable for various imidazopyridines and aryl iodides both bearing substituents with different electronic and steric properties (38 examples). Beyond the fact that this synthetic method complements the previously reported protocols for sulfenylation reactions, this work is meant to underline the unconventional role of DABCO‐bis(sulfur dioxide).

Replier
Ehlen A., Martin C., Miron S., Julien M., Theillet F.X., Boucherit V., Ropars V., Duchambon P., El Marjou A., Zinn Justin S., Carreira A. (2020 Apr 14)

Proper chromosome alignment depends on BRCA2 phosphorylation by PLK1

Nature Communications : 11 : 1819 : DOI : 10.1038/s41467-020-15689-9 En savoir plus
Résumé

The BRCA2 tumor suppressor protein is involved in the maintenance of genome integrity through its role in homologous recombination. In mitosis, BRCA2 is phosphorylated by Polo-like kinase 1 (PLK1). Here we describe how this phosphorylation contributes to the control of mitosis. We identify a conserved phosphorylation site at T207 of BRCA2 that constitutes a bona fide docking site for PLK1 and is phosphorylated in mitotic cells. We show that BRCA2 bound to PLK1 forms a complex with the phosphatase PP2A and phosphorylated-BUBR1. Reducing BRCA2 binding to PLK1, as observed in BRCA2 breast cancer variants S206C and T207A, alters the tetrameric complex resulting in unstable kinetochore-microtubule interactions, misaligned chromosomes, faulty chromosome segregation and aneuploidy. We thus reveal a role of BRCA2 in the alignment of chromosomes, distinct from its DNA repair function, with important consequences on chromosome stability. These findings may explain in part the aneuploidy observed in BRCA2-mutated tumors.

Replier
Abhijit Saha, Patricia Duchambon, Vanessa Masson, Damarys Loew, Sophie Bombard, Marie-Paule Teulade-Fichou (2020 Mar 20)

Nucleolin Discriminates Drastically between Long-Loop and Short-Loop Quadruplexes.

Biochemistry : 59 : 1261-1272 : DOI : 10.1021/acs.biochem.9b01094 En savoir plus
Résumé

We investigate herein the interaction between nucleolin (NCL) and a set of G4 sequences derived from the CEB25 human minisatellite that adopt a parallel topology while differing in the length of the central loop (from nine nucleotides to one nucleotide). It is revealed that NCL strongly binds to long-loop (five to nine nucleotides) G4 while interacting weakly with the shorter variants (loop with fewer than three nucleotides). Photo-cross-linking experiments using 5-bromo-2′-deoxyuridine (BrU)-modified sequences further confirmed the loop-length dependency, thereby indicating that the WT-CEB25-L191 (nine-nucleotide loop) is the best G4 substrate. Quantitative proteomic analysis (LC-MS/MS) of the product(s) obtained by photo-cross-linking NCL to this sequence enabled the identification of one contact site corresponding to a 15-amino acid fragment located in helix α2 of RNA binding domain 2 (RBD2), which sheds light on the role of this structural element in G4-loop recognition. Then, the ability of a panel of benchmark G4 ligands to prevent the NCL-G4 interaction was explored. It was found that only the most potent ligand PhenDC3 can inhibit NCL binding, thereby suggesting that the terminal guanine quartet is also a strong determinant of G4 recognition, putatively through interaction with the RGG domain. This study describes the molecular mechanism by which NCL recognizes G4-containing long loops and leads to the proposal of a model implying a concerted action of RBD2 and RGG domains to achieve specific G4 recognition via a dual loop-quartet interaction.

Nucleolin Discriminates Drastically between Long-Loop and Short-Loop Quadruplexes

Replier

Année de publication : 2019

Mouawad L., Beswick V., Jamin N., Montigny C., Quiniou E., Barbot T. (2019 Dec 18)

Deciphering the mechanism of inhibition of SERCA1a by sarcolipin using molecular simulations

bioRxiv : DOI : 10.1101/2019.12.17.879825 En savoir plus
Résumé

SERCA1a is an ATPase calcium pump that transports Ca2+ from the cytoplasm to the sarco/endoplasmic reticulum lumen. Sarcolipin (SLN), a transmembrane peptide, regulates the activity of SERCA1a by decreasing its Ca2+ transport rate, but its mechanism of action is still not well understood. To decipher this mechanism, we have performed normal modes analysis in the all-atom model, with the SERCA1a-SLN complex or the isolated SERCA1a embedded in an explicit membrane. The comparison of the results allowed us to provide an explanation for the action of SLN that is in good agreement with experimental observations. In our analyses, the presence of SLN locally perturbs the TM6 transmembrane helix and as a consequence modifies the position of D800, one of the key metal-chelating residues. Additionally, it reduces the flexibility of the gating residues, V304 and E309 in TM4, at the entrance of the Ca2+ binding sites, which would decrease the affinity for Ca2+. Unexpectedly, SLN has also an effect on the ATP binding site more than 35 r A away, due to the straightening of TM5, a long helix considered as the spine of the protein. The straightening of TM5 modifies the structure of the P-N linker that sits above it, and which comprises the 351DKTG354 conserved motif, resulting in an increase of the distance between ATP and the phosphorylation site. As a consequence, the turn-over rate could be affected. All this gives SERCA1a the propensity to go toward a Ca2+-deprived E2-like state in the presence of SLN and toward a Ca2+ high-affinity E1-like state in the absence of SLN, although the SERCA1a-SLN complex was crystallized in an E1-like state. In addition to a general mechanism of inhibition of SERCA1a regulatory peptides, this study also provides an insight in the conformational transition between the E2 and E1 states.

Replier
Katerina Duskova, Pauline Lejault, Élie Benchimol, Régis Guillot, Sébastien Britton, Anton Granzhan, David Monchaud (2019 Dec 13)

DNA junction ligands trigger DNA damage and are synthetic lethal with DNA repair inhibitors in cancer cells

Journal of the American Chemical Society : 142 : 424-435 : DOI : 10.1021/jacs.9b11150 En savoir plus
Résumé

Translocation of DNA and RNA polymerases along their duplex substrates results in DNA supercoiling. This torsional stress promotes the formation of plectonemic structures, including three-way DNA junction (TWJ), which can block DNA transactions and lead to DNA damage. While cells have evolved multiple mechanisms to prevent the accumulation of such structures, stabilizing TWJ through ad hoc ligands offer an opportunity to trigger DNA damage in cells with high level of transcription and replication, such as cancer cells. Here, we develop a series of azacryptand-based TWJ ligands, we thoroughly characterize their TWJ-interacting properties in vitro and demonstrate their capacity to trigger DNA damage in rapidly dividing human cancer cells. We also demonstrate that TWJ ligands are amenable to chemically induced synthetic lethality strategies upon association with inhibitors of DNA repair, thus paving the way towards innovative drug combinations to fight cancers.

DNA Junction Ligands Trigger DNA Damage

Replier