Chimie pour la Reconnaissance moléculaire des acides nucléiques

Anton GRANZHAN

Anton Granzhan Chef d'équipe Tél :

Présentation de l’équipe

Les thématiques de notre équipe portent sur le développement de nouvelles molécules (ligands, sondes fluorescentes) reconnaissant les structures non-canoniques de l’ADN et de l’ARN ; en particulier, les structures endommagées de l’ADN qui représentent des intermédiaires clés dans le processus de réparation de l’ADN et sont, ainsi, des cibles privilégiées. Nous étudions également les effets biologiques de ces ligands sur des modèles cellulaires, explorant l’hypothèse que ces composés peuvent interférer avec les fonctions biologiques des acides nucléiques et/ou le processus de réparation de l’ADN, visant des applications potentielles dans le contexte de la thérapie contre le cancer.

Reconnaissance de défauts d’appariement dans l’ADN double-brin

Reconnaissance des mésappariements et contrôle de l’hybridation de l’ADN par des ligands : Nous avons développé une famille de ligands macrocycliques de type polyazacyclophane (autrement appelés « cyclo-bisintercalants »), des ligands uniques de l’ADN, dont la géométrie très particulière est le facteur déterminant de leur forte affinité à des sites de défauts d’appariement Watson–Crick, tels que les mésappariements de bases ou les sites abasiques. En collaboration avec M. Jourdan (Grenoble) nous avons étudié la reconnaissance de mésappariements thymine–thymine (T-T) par ces ligands en utilisant la spectroscopie RMN de haut champ. Plus récemment, nous avons démontré que l’affinité de ces composés pour les sites de mésappariements peut être exploitée afin de contrôler l’hybridation de l’ADN. Ainsi, les deux brins d’ADN contenant plusieurs mésappariements T-T peuvent être amenés à s’hybrider en présence d’une quantité stœchiométrique de ligand. De plus, ce processus peut être contrôlé, de manière réversible, par l’ajout et/ou l’élimination de cations de cuivre(II) qui séquestrent le ligand sous forme d’un complexe binucléaire ne se liant pas à l’ADN. Ce comportement permet la mise en œuvre des « interrupteurs » ou des « machines » moléculaires à la base de l’ADN.

UMR9187-Equipe-Granzhan-Figure 1

Reconnaissance de sites abasiques et inhibition de la réparation de l’ADN : La liaison des ligands aux autres sites de défauts d’appariement, notamment les sites abasiques, peut être exploité afin de moduler le processus de réparation enzymatique de l’ADN. Nous avons démontré que l’interaction de ligands macrocycliques avec l’ADN portant un site abasique conduit à une forte inhibition du clivage de l’ADN par l’endonucléase apurinique/apyrimidique 1 (APE1) par le mécanisme de masquage du substrat (« inhibition indirecte »), avec des valeurs d’IC50 comparables à ceux des meilleurs inhibiteurs « classiques » agissant sur la protéine. Le masquage de substrat représente alors une approche intéressante pour inhiber l’activité d’APE1. De plus, dans le cas du substrat natif, l’inhibition de l’activité enzymatique est accompagnée d’un clivage de l’ADN induit par le ligand-même via un autre mécanisme (β-élimination). Par conséquent, le ligand induit une altération, au niveau du mécanisme et des produits du clivage, de la prise en charge enzymatique des sites abasiques dans l’ADN. Ainsi, les ligands ciblant les sites abasiques peuvent être considérés comme des modulateurs des voies de réparation de l’ADN, avec un potentiel pour la thérapie anti-cancéreuse en combinaison avec les agents endommageant l’ADN.

UMR9187-Equipe-Granzhan-Figure 2

Sondes fluorescentes pour les structures G-quadruplexes de l’ADN

La recherche des sondes fluorescentes pour l’ADN et l’ARN G-quadruplexes (G4) représente l’une des thématiques prioritaires dans ce domaine, car ces outils peuvent permettre une meilleure compréhension de la structure, de la persistance et des fonctions biologiques des G4-ADN et des G4-ARN. Dans ce contexte, nous avons développé des colorants de type 2,4-distyrylpyrimidinium (e.g., 1a et ses analogues), facilement accessibles et ayant une excellente réponse fluorimétrique pour les G4-ADN. Nous avons également développé une sonde multimodale (colorimétrique/fluorimétrique) BCVP, robuste et utilisable pour la détection et la discrimination optique des G4-ADN (par rapport aux autres structures de l’ADN) in vitro.

UMR9187-Equipe-Granzhan-Figure 3

Publications clés

Année de publication : 2020

Yu Luo, Anton Granzhan, Daniela Verga, Jean-Louis Mergny (2020 Dec 28)

FRET-MC: A fluorescence melting competition assay for studying G4 structures in vitro.

Biopolymers : Early view : bip23415 : DOI : 10.1002/bip.23415
Oksana Reznichenko, Anne Cucchiarini, Valérie Gabelica, Anton Granzhan (2020 Dec 8)

Quadruplex DNA-guided ligand selection from dynamic combinatorial libraries of acylhydrazones

Organic and Biomolecular Chemistry : 19 : 379-386 : DOI : 10.1039/D0OB01908A
Anton Granzhan, Rodrigo Prado Martins, Robin Fåhraeus, Marc Blondel and Marie-Paule Teulade-Fichou (2020 Jun 30)

Quadruplex-interacting compounds for regulating the translation of the Epstein–Barr virus nuclear antigen 1 (EBNA1) mRNA: A new strategy to prevent and treat EBV-related cancers

Quadruplex Nucleic Acids As Targets For Medicinal Chemistry, Annual Reports in Medicinal Chemistry : Chap 8, 54 : 243-286 : DOI : 10.1016/bs.armc.2020.05.001
Michela Zuffo, Aurélie Gandolfini, Brahim Heddi, Anton Granzhan (2020 Apr 20)

Harnessing intrinsic fluorescence for typing of secondary structures of DNA

Nucleic Acids Research : 48 : e61 : DOI : 10.1093/nar/gkaa257

Année de publication : 2019

Katerina Duskova, Pauline Lejault, Élie Benchimol, Régis Guillot, Sébastien Britton, Anton Granzhan, David Monchaud (2019 Dec 13)

DNA junction ligands trigger DNA damage and are synthetic lethal with DNA repair inhibitors in cancer cells

Journal of the American Chemical Society : 142 : 424-435 : DOI : 10.1021/jacs.9b11150
Michaela Krafcikova, Simon Dzatko, Coralie Caron, Anton Granzhan, Radovan Fiala, Tomas Loja, Marie-Paule Teulade-Fichou, Tomas Fessl, Robert Hänsel-Hertsch, Jean-Louis Mergny, Silvie Foldynova-Trantirkova, Lukas Trantirek (2019 Aug 9)

Monitoring DNA–Ligand Interactions in Living Human Cells Using NMR Spectroscopy

Journal of the American Chemical Society : 141 : 13281-13285 : DOI : 10.1021/jacs.9b03031
toutes les publications