UMR9187 / U1196 – Chimie, modélisation et imagerie pour la biologie

Publications de l’unité

Année de publication : 2018

Annalisa Patriarca, Charles Fouillade, Michel Auger, Frédéric Martin, Frédéric Pouzoulet, Catherine Nauraye, Sophie Heinrich, Vincent Favaudon, Samuel Meyroneinc, Rémi Dendale, Alejandro Mazal, Philip Poortmans, Pierre Verrelle, Ludovic De Marzi (2018 Jul 17)

Experimental set-up for FLASH proton irradiation of small animals using a clinical system

International Journal of Radiation Oncology • Biology • Physics : Published ahead of print : DOI : 10.1016/j.ijrobp.2018.06.403 En savoir plus
Résumé

Purpose

Recent in vivo investigations have shown that short pulses (FLASH) of electrons are less harmful to healthy tissues, but just as efficient as conventional dose-rate radiation to inhibit tumor growth. In view of the potential clinical value of FLASH and the availability of modern proton therapy infrastructures to achieve this goal, we herein describe a series of technological developments required to investigate the biology of FLASH irradiation, using a commercially available clinical proton therapy system.

Methods and materials

Numerical simulations and experimental dosimetric characterization of a modified clinical proton beamline, upstream from the isocenter were performed with Monte Carlo toolkit and different detectors. A single scattering system was optimized together with a ridge filter and a high current monitoring system. In addition, a submillimetric set-up protocol based on image-guidance using a digital camera and an animal positioning system was also developed.

Results

The dosimetric properties of the resulting beam and monitoring system were characterized: linearity with dose rate and homogeneity for a 12×12 mm2 field size were assessed. Dose rates exceeding 40 Gy/s at energies between 138 and 198 MeV were obtained, enabling uniform irradiation for radiobiology investigations on small animals in a modified clinical proton beam line.

Conclusion

This approach will enable us to conduct FLASH proton therapy experiments on small animals, specifically for mouse lung irradiation. Dose rates exceeding 40 Gy/s were achieved, which was not possible with the conventional clinical mode of the existing beamline.

Replier
Marlène Rasschaert, Josef A Schroeder, Ting-Di Wu, Sergio Marco, Andréa Emerit, Heiko Siegmund, Claudia Fischer, Nathalie Fretellier, Jean-Marc Idée, Claire Corot, Christoph Brochhausen, Jean-Luc Guerquin-Kern (2018 Jul 10)

Multimodal Imaging Study of Gadolinium Presence in Rat Cerebellum: Differences Between Gd Chelates, Presence in the Virchow-Robin Space, Association With Lipofuscin, and Hypotheses About Distribution Pathway.

Investigative radiology : Published Ahead of Print : DOI : 10.1097/RLI.0000000000000490 En savoir plus
Résumé

Purpose The aim of this study was to investigate, based on in-depth multimodal imaging, the presence of Gd deposits, their ultrastructure, location, and co-location with endogenous elements, in the cerebellum, after repeated administrations of gadolinium-based contrast agents (GBCAs).

Methods Rats sensitized by subtotal nephrectomy received 20 daily intravenous injections of 0.6 mmol Gd/kg for 5 weeks of commercial forms of either gadoterate, gadobenate or gadodiamide, or saline (n = 2/group). The study was randomized and blinded. Magnetic resonance imaging examination was performed weekly. One month after the last injection, electron microscopy analysis of the deep cerebellar nuclei, the granular layer of cerebellar cortex, and the choroid plexus was performed. Elemental analysis of deposits was carried out by electron energy loss spectroscopy. Secondary ion mass spectroscopy was used for complementary chemical mapping.

Results A T1 hypersignal was evidenced in the deep cerebellar nuclei of rats treated with linear GBCAs, and Gd deposits were identified in all the studied cerebellar structures with gadobenate and gadodiamide (except in the granular layer in gadobenate-treated rats). No such effect was found with the macrocyclic GBCA gadoterate. Most of the Gd deposits revealed a characteristic spheroid “sea urchin-like” morphology, rich in phosphorus, and were localized in the basal lamina of microvessels, in the perivascular Virchow-Robin space, and in the interstitium. Gd was also identified in the glial cells, associated with lipofuscin pigments, for these same groups.

Conclusions Transmission electron microscopy analysis of cerebellums of renally impaired rats repeatedly injected with gadobenate and gadodiamide revealed the presence of Gd. Spheroid Gd depositions consisting of a filamentous meshwork were observed in the wall of microvessels, in perivascular Virchow-Robin space, and in the interstitium. Gd was also found in choroid plexus and was associated with pigments (likely lipofuscin) in glial cells. This is consistent with the involvement of the glymphatic distribution pathway for GBCAs. No insoluble Gd deposits were detected in rats injected with the macrocyclic GBCA gadoterate and controls.

 

Replier
Lina Saker, Samar Ali, Caroline Masserot, Guillaume Kellermann, Joel Poupon, Marie-Paule Teulade-Fichou, Evelyne Ségal-Bendirdjian, Sophie Bombard (2018 Jul 5)

Platinum Complexes Can Bind to Telomeres by Coordination.

International journal of molecular sciences : 19 : DOI : 10.3390/ijms19071951 En savoir plus
Résumé

It is suggested that several compounds, including G-quadruplex ligands, can target telomeres, inducing their uncapping and, ultimately, cell death. However, it has never been demonstrated whether such ligands can bind directly and quantitatively to telomeres. Here, we employed the property of platinum and platinum-G-quadruplex complexes to target G-rich sequences to investigate and quantify their covalent binding to telomeres. Using inductively coupled plasma mass spectrometry, surprisingly, we found that, in cellulo, in the presence of cisplatin, a di-functional platinum complex, telomeric DNA was platinated 13-times less than genomic DNA in cellulo, as compared to in vitro data. On the contrary, the amount of mono-functional platinum complexes (Pt-ttpy and Pt-tpy) bound either to telomeric or to genomic DNA was similar and occurred in a G-quadruplex independent-manner. Importantly, the quantification revealed that the low level of cisplatin bound to telomeric DNA could not be the direct physical cause of TRF2 displacement from telomeres. Altogether, our data suggest that platinum complexes can affect telomeres both directly and indirectly.img_1

Replier
Xiao Xie, Oksana Reznichenko, Ludovic Chaput, Pascal Martin, Marie-Paule Teulade-Fichou, Anton Granzhan (2018 Jun 8)

Topology-Selective Fluorescent « Light-Up » Probes for G-Quadruplex DNA Based on Photoinduced Electron Transfer.

Chemistry (Weinheim an der Bergstrasse, Germany) : Accepted manuscript : DOI : 10.1002/chem.201801701 En savoir plus
Résumé

Six novel probes were prepared by covalent attachment of a G4-DNA ligand (PDC) to various coumarin or pyrene fluorophores. In the absence of DNA, the fluorescence of all probes is quenched due to intramolecular photoinduced electron transfer (PET) evidenced by photophysical and electrochemical studies, molecular modeling and DFT calculations. All probes demonstrate similarly high thermal stabilization of various G4-DNA substrates belonging to different folding topologies, as assessed by fluorescence melting experiments; however, their fluorimetric response is strongly heterogeneous with respect to structures of the probes and G4-DNA targets. Thus, the probes containing the 7-diethylaminocoumarin fluorophore demonstrate significant fluorescence enhancement in the presence of G4-DNA, with the strongest « light-up » response (20- to 180-fold) observed for antiparallel G4 structures as well as for hybrid G4 structures, formed by the variants of human telomeric sequence and capable of a conformation change to the antiparallel isoform. These results shed light on the influence of the linker and electronic properties of fluorophores on the efficiency of G4-DNA « light-up » probes operating via PET.

Replier