Laboratoire de Spectrométrie de Masse Protéomique (LSMP)

Publications

Année de publication : 2017

Gheghiani Lilia , Loew Damarys, Lombard Bérangère, Mansfeld Jörg, Gavet Olivier (2017 Jun 6)

PLK1 Activation in Late G2 Sets Up Commitment to Mitosis

Cell Reports : 19 : 2060-2073 : DOI : 10.1016/j.celrep.2017.05.031 En savoir plus
Résumé

Commitment to mitosis must be tightly coordinated with DNA replication to preserve genome integrity. While we have previously established that the timely activation of CyclinB1-Cdk1 in late G2 triggers mitotic entry, the upstream regulatory mechanisms remain unclear. Here, we report that Polo-like kinase 1 (Plk1) is required for entry into mitosis during an unperturbed cell cycle and is rapidly activated shortly before CyclinB1-Cdk1. We determine that Plk1 associates with the Cdc25C1 phosphatase and induces its phosphorylation before mitotic entry. Plk1-dependent Cdc25C1 phosphosites are sufficient to promote mitotic entry, even when Plk1 activity is inhibited. Furthermore, we find that activation of Plk1 during G2 relies on CyclinA2-Cdk activity levels. Our findings thus elucidate a critical role for Plk1 in CyclinB1-Cdk1 activation and mitotic entry and outline how CyclinA2-Cdk, an S-promoting factor, poises cells for commitment to mitosis.

Replier
Guillaume Kellermann, Florent Dingli, Vanessa Masson, Daniel Dauzonne, Evelyne Ségal-Bendirdjian, Marie-Paule Teulade-Fichou, Damarys Loew, Sophie Bombard (2017 Mar 1)

Exploring the mechanism of inhibition of human telomerase by cysteine-reactive compounds.

FEBS letters : 591 : 863-874 : DOI : 10.1002/1873-3468.12589 En savoir plus
Résumé

Telomerase is an almost universal cancer target that consists minimally of a core protein (hTERT) and an RNA (hTR). Some inhibitors of this enzyme are thought to function by the covalent binding to one or several cystein residues; however, this inhibition mechanism has never been investigated because of the difficulty in producing telomerase. In the present study, we use a recent method to produce recombinant hTERT to analyse the effect of cysteine reactive inhibitors on telomerase. Using mass-spectrometry (MS) and mutagenesis analysis, we identify several targeted residues in separated domains of the hTERT protein and show that cysteine-reactive reagents abolish the interaction with the CR4/5 region of hTR. This article is protected by copyright. All rights reserved.

Replier
Sergio A Rincon, Miguel Estravis, Florent Dingli, Damarys Loew, Phong T Tran, Anne Paoletti (2017 Feb 7)

SIN-Dependent Dissociation of the SAD Kinase Cdr2 from the Cell Cortex Resets the Division Plane.

Current biology : CB : 534-542 : DOI : S0960-9822(16)31532-9 En savoir plus
Résumé

Proper division plane positioning is crucial for faithful chromosome segregation but also influences cell size, position, or fate [1]. In fission yeast, medial division is controlled through negative signaling by the cell tips during interphase and positive signaling by the centrally placed nucleus at mitotic entry [2-4]: the cell geometry network (CGN), controlled by the inhibitory cortical gradient of the DYRK kinase Pom1 emanating from the cell tips, first promotes the medial localization of cytokinetic ring precursors organized by the SAD kinase Cdr2 to pre-define the division plane [5-8]; then, massive nuclear export of the anillin-like protein Mid1 at mitosis entry confirms or readjusts the division plane according to nuclear position and triggers the assembly of a medial contractile ring [5, 9-11]. Strikingly, the Hippo-like septation initiation network (SIN) induces Cdr2 dissociation from cytokinetic precursors at this stage [12-14]. We show here that SIN-dependent phosphorylation of Cdr2 promotes its interaction with the 14-3-3 protein Rad24 that sequesters it in the cytoplasm during cell division. If this interaction is compromised, cytokinetic precursors are asymmetrically distributed in the cortex of newborn cells, leading to asymmetrical division if nuclear signaling is abolished. We conclude that, through this new function, the SIN resets the division plane in newborn cells to ensure medial division.

Replier
Yann Duroc, Rajeev Kumar, Lepakshi Ranjha, Céline Adam, Raphaël Guérois, Khan Md Muntaz, Marie-Claude Marsolier-Kergoat, Florent Dingli, Raphaëlle Laureau, Damarys Loew, Bertrand Llorente, Jean-Baptiste Charbonnier, Petr Cejka, Valérie Borde (2017 Jan 5)

Concerted action of the MutLβ heterodimer and Mer3 helicase regulates the global extent of meiotic gene conversion.

eLife : DOI : 10.7554/eLife.21900 En savoir plus
Résumé

Gene conversions resulting from meiotic recombination are critical in shaping genome diversification and evolution. How the extent of gene conversions is regulated is unknown. Here we show that the budding yeast mismatch repair related MutLβ complex, Mlh1-Mlh2, specifically interacts with the conserved meiotic Mer3 helicase, which recruits it to recombination hotspots, independently of mismatch recognition. This recruitment is essential to limit gene conversion tract lengths genome-wide, without affecting crossover formation. Contrary to expectations, Mer3 helicase activity, proposed to extend the displacement loop (D-loop) recombination intermediate, does not influence the length of gene conversion events, revealing non-catalytical roles of Mer3. In addition, both purified Mer3 and MutLβ preferentially recognize D-loops, providing a mechanism for limiting gene conversion in vivo. These findings show that MutLβ is an integral part of a new regulatory step of meiotic recombination, which has implications to prevent rapid allele fixation and hotspot erosion in populations.

Replier