Année de publication : 2020

Küssau T., Van Wyk N., Johansen M.D., Alsarraf H.M.A.B., Neyret A., Hamela C., Sørensen K.K., Thygesen M.B., Beauvineau C., Kremer L., Blaise M. (2020 Nov 4)

Functional Characterization of the N-Acetylmuramyl-l-Alanine Amidase, Ami1, from Mycobacterium abscessus

Cells : 9 : 2410 : DOI : 10.3390/cells9112410 En savoir plus

Peptidoglycan (PG) is made of a polymer of disaccharides organized as a three-dimensional mesh-like network connected together by peptidic cross-links. PG is a dynamic structure that is essential for resistance to environmental stressors. Remodeling of PG occurs throughout the bacterial life cycle, particularly during bacterial division and separation into daughter cells. Numerous autolysins with various substrate specificities participate in PG remodeling. Expression of these enzymes must be tightly regulated, as an excess of hydrolytic activity can be detrimental for the bacteria. In non-tuberculous mycobacteria such as Mycobacterium abscessus, the function of PG-modifying enzymes has been poorly investigated. In this study, we characterized the function of the PG amidase, Ami1 from M. abscessus. An ami1 deletion mutant was generated and the phenotypes of the mutant were evaluated with respect to susceptibility to antibiotics and virulence in human macrophages and zebrafish. The capacity of purified Ami1 to hydrolyze muramyl-dipeptide was demonstrated in vitro. In addition, the screening of a 9200 compounds library led to the selection of three compounds inhibiting Ami1 in vitro. We also report the structural characterization of Ami1 which, combined with in silico docking studies, allows us to propose a mode of action for these inhibitors.


Année de publication : 2019

El Hassen Mokrani, Abderrahmane Bensegueni, Ludovic Chaput, Claire Beauvineau, Hanane Djeghim, Liliane Mouawad (2019 May 1)

Identification of New Potent Acetylcholinesterase Inhibitors Using Virtual Screening and In Vitro Approaches.

Molecular informatics : 38 : 1800118 : DOI : 10.1002/minf.201800118 En savoir plus

Acetylcholinesterase (AChE) is currently the most favorable target for the symptomatic treatment and reduction of Alzheimer’s disease (AD). In order to identify new potent inhibitors of this enzyme, we describe herein a new structure‐based virtual screening (SBVS) using the Institut Curie‐CNRS chemical library (ICCL), which contained at the screening date 14307 compounds. The strategy undertaken in this work consisted of the use of several docking programs in SBVS calculations followed by the application of a consensus method (vSDC) and a scrupulous visual analysis. It allowed us to obtain a high degree of success, with a yield of almost 86 %, since 12 hits were identified among only 14 molecules tested in vitro. Still more remarkably, 6 of these hits were more active than galantamine, the reference inhibitor. These hits were predicted to have good ADMET properties. The two most promising compounds can serve as leads for AD treatment.

Pauline Gilson, Morgane Couvet, Laetitia Vanwonterghem, Maxime Henry, Julien Vollaire, Vladimir Baulin, Marco Werner, Anna Orlowska, Véronique Josserand, Florence Mahuteau-Betzer, Laurence Lafanechère, Jean-Luc Coll, Benoit Busser, Amandine Hurbin (2019 Feb 1)

The pyrrolopyrimidine colchicine-binding site agent PP-13 reduces the metastatic dissemination of invasive cancer cells in vitro and in vivo.

Biochemical pharmacology : 160 : 1-13 : DOI : S0006-2952(18)30503-3 En savoir plus

Standard chemotherapies that interfere with microtubule dynamics are a chemotherapeutic option used for the patients with advanced malignancies that invariably relapse after targeted therapies. However, major efforts are needed to reduce their toxicity, optimize their efficacy, and reduce cancer chemoresistance to these agents. We previously identified a pyrrolo[2,3d]pyrimidine-based microtubule-depolymerizing agent (PP-13) that binds to the colchicine site of β-tubulin and exhibits anticancer properties in solid human cancer cells, including chemoresistant subtypes. Here, we investigated the therapeutic potential of PP-13 in vitro and in vivo. PP-13 induced a mitotic blockade and apoptosis in several cancer cells cultured in two-dimensions or three-dimensions spheroids, in conjunction with reduced cell proliferation. Capillary-like tube formation assays using HUVECs showed that PP-13 displayed antiangiogenic properties. It also inhibited cancer cell motility and invasion, in in vitro wound-healing and transwell migration assays. Low concentration PP-13 (130 nmol.L) treatment significantly reduced the metastatic invasiveness of human cancer cells engrafts on chicken chorioallantoic membrane. In nude mice, 0.5 or 1 PP-13 intraperitoneally administered three-times a week reduced the sizes of paclitaxel-refractory orthotopic breast tumors, delayed the progression of metastasis, and decreased the global metastatic load compared to 0.5 paclitaxel or vehicle alone. PP-13 did not show any apparent early adverse effect in vivo. These data suggest that PP-13 is a promising alternative to standard chemotherapy in antimitotic drug-refractory tumors, especially through its impact on metastasis.


Année de publication : 2017

Pauline Gilson, Fernando Josa-Prado, Claire Beauvineau, Delphine Naud-Martin, Laetitia Vanwonterghem, Florence Mahuteau-Betzer, Alexis Moreno, Pierre Falson, Laurence Lafanechère, Véronique Frachet, Jean-Luc Coll, Jose Fernando Díaz, Amandine Hurbin, Benoit Busser (2017 Sep 2)

Identification of pyrrolopyrimidine derivative PP-13 as a novel microtubule-destabilizing agent with promising anticancer properties.

Scientific reports : 7 : 10209 : DOI : 10.1038/s41598-017-09491-9 En savoir plus

Despite the emergence of targeted therapies and immunotherapy, chemotherapy remains the gold-standard for the treatment of most patients with solid malignancies. Spindle poisons that interfere with microtubule dynamics are commonly used in chemotherapy drug combinations. However, their troublesome side effects and the emergence of chemoresistance highlight the need for identifying alternative agents. We performed a high throughput cell-based screening and selected a pyrrolopyrimidine molecule (named PP-13). In the present study, we evaluated its anticancer properties in vitro and in vivo. We showed that PP-13 exerted cytotoxic effects on various cancer cells, including those resistant to current targeted therapies and chemotherapies. PP-13 induced a transient mitotic blockade by interfering with both mitotic spindle organization and microtubule dynamics and finally led to mitotic slippage, aneuploidy and direct apoptotic death. PP-13 was identified as a microtubule-targeting agent that binds directly to the colchicine site in β-tubulin. Interestingly, PP-13 overcame the multidrug-resistant cancer cell phenotype and significantly reduced tumour growth and metastatic invasiveness without any noticeable toxicity for the chicken embryo in vivo. Overall, PP-13 appears to be a novel synthetic microtubule inhibitor with interesting anticancer properties and could be further investigated as a potent alternative for the management of malignancies including chemoresistant ones.

Buchieri Maria V., Cimino Mena , Rebollo-Ramirez Sonia, Beauvineau Claire, Cascioferro Alessandro, Favre-Rochex Sandrine, Helynck Olivier, Naud-Martin Delphine, Larrouy-Maumus Gerald, Munier-Lehmann Hélène, Gicquel Brigitte (2017 Aug 28)

Nitazoxanide Analogs Require Nitroreduction for Antimicrobial Activity in Mycobacterium smegmatis

Journal of Medicinal Chemistry : 60 : 7425-7433 : DOI : 10.1021/acs.jmedchem.7b00726 En savoir plus

In this study, we aimed to decipher the natural resistance mechanisms of mycobacteria against novel compounds isolated by whole-cell-based high-throughput screening (HTS). We identified active compounds using Mycobacterium aurum. Further analyses were performed to determine the resistance mechanism of M. smegmatis against one hit, 3-bromo-N-(5-nitrothiazol-2-yl)-4-propoxybenzamide (3), which turned out to be an analog of the drug nitazoxanide (1). We found that the repression of the gene nfnB coding for the nitroreductase NfnB was responsible for the natural resistance of M. smegmatis against 3. The overexpression of nfnB resulted in sensitivity of M. smegmatis to 3. This compound must be metabolized into hydroxylamine intermediate for exhibiting antibacterial activity. Thus, we describe, for the first time, the activity of a mycobacterial nitroreductase against 1 analogs, highlighting the differences in the metabolism of nitro compounds among mycobacterial species and emphasizing the potential of nitro drugs as antibacterials in various bacterial species.


Marianne Lucas-Hourani, Daniel Dauzonne, Hélène Munier-Lehmann, Samira Khiar, Sébastien Nisole, Julien Dairou, Olivier Helynck, Philippe V Afonso, Frédéric Tangy, Pierre-Olivier Vidalain (2017 Aug 16)

Original Chemical Series of Pyrimidine Biosynthesis Inhibitors That Boost the Antiviral Interferon Response.

Antimicrobial agents and chemotherapy : 61 : e00383-17 : DOI : 10.1128/AAC.00383-17 En savoir plus

pyrimidine biosynthesis is a key metabolic pathway involved in multiple biosynthetic processes. Here, we identified an original series of 3-(1-indol-3-yl)-2,3-dihydro-4-furo[3,2-]chromen-4-one derivatives as a new class of pyrimidine biosynthesis inhibitors formed by two edge-fused polycyclic moieties. We show that identified compounds exhibit broad-spectrum antiviral activity and immunostimulatory properties, in line with recent reports linking pyrimidine biosynthesis with innate defense mechanisms against viruses. Most importantly, we establish that pyrimidine deprivation can amplify the production of both type I and type III interferons by cells stimulated with retinoic acid-inducible gene 1 (RIG-I) ligands. Altogether, our results further expand the current panel of pyrimidine biosynthesis inhibitors and illustrate how the production of antiviral interferons is tightly coupled to this metabolic pathway. Functional and structural similarities between this new chemical series and dicoumarol, which was reported before to inhibit pyrimidine biosynthesis at the dihydroorotate dehydrogenase (DHODH) step, are discussed.

Morgan Pellerano, Sergey Tcherniuk, Corine Perals, Thi Nhu Ngoc Van, Elsa Garcin, Florence Mahuteau-Betzer, Marie-Paule Teulade-Fichou, May C Morris (2017 Apr 22)

Targeting Conformational Activation of CDK2 Kinase.

Biotechnology journal : 12 : 1600531 : DOI : 10.1002/biot.201600531 En savoir plus

Cyclin-dependent kinases constitute attractive pharmacological targets for cancer therapeutics, yet inhibitors in clinical trials target the ATP-binding pocket of the CDK and therefore suffer from limited selectivity and emergence of resistance. The more recent development of allosteric inhibitors targeting conformational plasticity of protein kinases offers promising perspectives for therapeutics. In particular tampering with T-loop dynamics of CDK2 kinase would provide a selective means of inhibiting this kinase, by preventing its conformational activation. To this aim we engineered a fluorescent biosensor that specifically reports on conformational changes of CDK2 activation loop and is insensitive to ATP or ATP-competitive inhibitors, which constitutes a highly sensitive probe for identification of selective T-loop modulators. This biosensor was successfully applied to screen a library of small chemical compounds leading to discovery of a family of quinacridine analogs, which potently inhibit cancer cell proliferation, and promote accumulation of cells in S phase and G2. These compounds bind CDK2/ Cyclin A, inhibit its kinase activity, compete with substrate binding, but not with ATP, and dock onto the T-loop of CDK2. The best compound also binds CDK4 and CDK4/Cyclin D1, but not CDK1. The strategy we describe opens new doors for the discovery of a new class of allosteric CDK inhibitors for cancer therapeutics.

Guillaume Kellermann, Florent Dingli, Vanessa Masson, Daniel Dauzonne, Evelyne Ségal-Bendirdjian, Marie-Paule Teulade-Fichou, Damarys Loew, Sophie Bombard (2017 Mar 1)

Exploring the mechanism of inhibition of human telomerase by cysteine-reactive compounds

FEBS letters : 591 : 863-874 : DOI : 10.1002/1873-3468.12589 En savoir plus

Telomerase is an almost universal cancer target that consists minimally of a core protein (hTERT) and an RNA (hTR). Some inhibitors of this enzyme are thought to function by the covalent binding to one or several cystein residues; however, this inhibition mechanism has never been investigated because of the difficulty in producing telomerase. In the present study, we use a recent method to produce recombinant hTERT to analyse the effect of cysteine reactive inhibitors on telomerase. Using mass-spectrometry (MS) and mutagenesis analysis, we identify several targeted residues in separated domains of the hTERT protein and show that cysteine-reactive reagents abolish the interaction with the CR4/5 region of hTR. This article is protected by copyright. All rights reserved.


Année de publication : 2016

Laetitia Saint-Paul, Chi-Hung Nguyen, Jean-Noël Bastie, Laurent Delva, Ronan Quéré (2016 Dec 8)

CD45 phosphatase, a relevant target for the treatment of acute myeloid leukemia.

Medecine sciences : M/S : 32 : 1051-1053 : DOI : 10.1051/medsci/20163212002 En savoir plus

Laetitia Saint-Paul, Chi-Hung Nguyen, Anne Buffière, Jean-Paul Pais de Barros, Arlette Hammann, Corinne Landras-Guetta, Rodolphe Filomenko, Marie-Lorraine Chrétien, Pauline Johnson, Jean-Noël Bastie, Laurent Delva, Ronan Quéré (2016 Sep 1)

CD45 phosphatase is crucial for human and murine acute myeloid leukemia maintenance through its localization in lipid rafts.

Oncotarget : 7 : 64785-64797 : DOI : 10.18632/oncotarget.11622 En savoir plus

CD45 is a pan-leukocyte protein with tyrosine phosphatase activity involved in the regulation of signal transduction in hematopoiesis. Exploiting CD45 KO mice and lentiviral shRNA, we prove the crucial role that CD45 plays in acute myeloid leukemia (AML) development and maintenance. We discovered that CD45 does not colocalize with lipid rafts on murine and human non-transformed hematopoietic cells. Using a mouse model, we proved that CD45 positioning within lipid rafts is modified during their oncogenic transformation to AML. CD45 colocalized with lipid rafts on AML cells, which contributes to elevated GM-CSF signal intensity involved in proliferation of leukemic cells. We furthermore proved that the GM-CSF/Lyn/Stat3 pathway that contributes to growth of leukemic cells could be profoundly affected, by using a new plasma membrane disrupting agent, which rapidly delocalized CD45 away from lipid rafts. We provide evidence that this mechanism is also effective on human primary AML samples and xenograft transplantation. In conclusion, this study highlights the emerging evidence of the involvement of lipid rafts in oncogenic development of AML and the targeting of CD45 positioning among lipid rafts as a new strategy in the treatment of AML.

Chaput L., Martinez-Sanz J., Quiniou E., Rigolet P., Saettel N., Mouawad L. (2016 Jan 18)

vSDC: a method to improve early recognition in virtual screening when limited experimental resources are available

Journal of Cheminformatics : 8:1 : DOI : 10.1186/s13321-016-0112-z En savoir plus

Background: In drug design, one may be confronted to the problem of finding hits for targets for which no small inhibiting molecules are known and only low-throughput experiments are available (like ITC or NMR studies), two common difficulties encountered in a typical academic setting. Using a virtual screening strategy like docking can alleviate some of the problems and save a considerable amount of time by selecting only top-ranking molecules, but only if the method is very efficient, i.e. when a good proportion of actives are found in the 1-10 % best ranked molecules.

Results: The use of several programs (in our study, Gold, Surflex, FlexX and Glide were considered) shows a divergence of the results, which presents a difficulty in guiding the experiments. To overcome this divergence and increase the yield of the virtual screening, we created the standard deviation consensus (SDC) and variable SDC (vSDC) methods, consisting of the intersection of molecule sets from several virtual screening programs, based on the standard deviations of their ranking distributions.

Conclusions: SDC allowed us to find hits for two new protein targets by testing only 9 and 11 small molecules from a chemical library of circa 15,000 compounds. Furthermore, vSDC, when applied to the 102 proteins of the DUD-E benchmarking database, succeeded in finding more hits than any of the four isolated programs for 13-60 % of the targets. In addition, when only 10 molecules of each of the 102 chemical libraries were considered, vSDC performed better in the number of hits found, with an improvement of 6-24 % over the 10 best-ranked molecules given by the individual docking programs.

Clément Grandin, Marianne-Lucas Hourani, Yves L Janin, Daniel Dauzonne, Hélène Munier-Lehmann, Adeline Paturet, Fabrice Taborik, Astrid Vabret, Hugues Contamin, Frédéric Tangy, Pierre-Olivier Vidalain (2016 Jan 2)

Respiratory syncytial virus infection in macaques is not suppressed by intranasal sprays of pyrimidine biosynthesis inhibitors.

Antiviral research : 125 : 58-62 : DOI : 10.1016/j.antiviral.2015.11.006 En savoir plus

There is imperious need for efficient therapies against ubiquitous and life-threatening respiratory viruses, foremost among them being the human respiratory syncytial virus (hRSV). Several research groups who performed functional screens for broad-spectrum antivirals identified compounds targeting the de novo pyrimidine biosynthesis pathway. Despite their strong antiviral activity in vitro, whether such antimetabolites are effective in vivo remains highly controversial. Here, we evaluated two potent pyrimidine biosynthesis inhibitors developed in our laboratory, IPPA17-A04 and GAC50, in a model of mild hRSV-infection in cynomolgus macaques. In this model, hRSV replication is restricted to the epithelium of the upper respiratory tract, and is compatible with a topical treatment by intranasal sprays. The local administration of palivizumab, a neutralizing anti-hRSV antibody used in clinics, significantly reduced virus replication. In contrast, pyrimidine biosynthesis inhibitors did not show any inhibitory effect on hRSV growth when delivered topically as experimented in our model. Our results should help to better define the potential applications of this class of antimetabolites in the treatment of viral infections.


Année de publication : 2015

Ly-Thuy-Tram Le, Morgane Couvet, Bertrand Favier, Jean-Luc Coll, Chi-Hung Nguyen, Annie Molla (2015 Sep 8)

Discovery of benzo[e]pyridoindolones as kinase inhibitors that disrupt mitosis exit while erasing AMPK-Thr172 phosphorylation on the spindle.

Oncotarget : 6 : 22152-22166 : DOI : 10.18632/oncotarget.4158 En savoir plus

Aurora kinases play an essential role in mitotic progression and are attractive targets in cancer therapy. The first generation of benzo[e]pyridoindole exhibited powerful aurora kinase inhibition but their low solubility limited further development. Grafting a pyperidine-ethoxy group gives rise to a hydrosoluble inhibitor: compound C5M.

C5M could efficiently inhibit the proliferation of cells from different origins. C5M prevented cell cycling, induced a strong mitotic arrest then, cells became polyploid and finally died. C5M did not impair the spindle checkpoint, the separation of the sister chromatids and the transfer of aurora B on the mid-zone. C5M prevented histone H3 phosphorylation at mitotic entry and erased AMPK-Thr172 phosphorylation in late mitosis. With this unique profile of inhibition, C5M could be useful for understanding the role of phospho-Thr172-AMPK in abscission and the relationship between the chromosomal complex and the energy sensing machinery.

C5M is a multikinase inhibitor with interesting preclinical characteristics: high hydro-solubility and a good stability in plasma. A single dose prevents the expansion of multicellular spheroids. C5M can safely be injected to mice and reduces significantly the development of xenograft. The next step will be to define the protocol of treatment and the cancer therapeutic field of this new anti-proliferative drug.

Guillaume Kellermann, Markus Kaiser, Florent Dingli, Olivier Lahuna, Delphine Naud-Martin, Florence Mahuteau-Betzer, Damarys Loew, Evelyne Ségal-Bendirdjian, Marie-Paule Teulade-Fichou, Sophie Bombard (2015 Sep 3)

Identification of human telomerase assembly inhibitors enabled by a novel method to produce hTERT.

Nucleic acids research : 43 : e99 : DOI : 10.1093/nar/gkv425 En savoir plus

Telomerase is the enzyme that maintains the length of telomeres. It is minimally constituted of two components: a core reverse transcriptase protein (hTERT) and an RNA (hTR). Despite its significance as an almost universal cancer target, the understanding of the structure of telomerase and the optimization of specific inhibitors have been hampered by the limited amount of enzyme available. Here, we present a breakthrough method to produce unprecedented amounts of recombinant hTERT and to reconstitute human telomerase with purified components. This system provides a decisive tool to identify regulators of the assembly of this ribonucleoprotein complex. It also enables the large-scale screening of small-molecules capable to interfere with telomerase assembly. Indeed, it has allowed us to identify a compound that inhibits telomerase activity when added prior to the assembly of the enzyme, while it has no effect on an already assembled telomerase. Therefore, the novel system presented here may accelerate the understanding of human telomerase assembly and facilitate the discovery of potent and mechanistically unique inhibitors.

Florence Mahuteau-Betzer (2015 May 12)

The French National Compound Library: advances and future prospects.

Médecine sciences : M/S : 31 : 417-422 : DOI : 10.1051/medsci/20153104016 En savoir plus

The French National Compound Library (Chimiothèque Nationale) has been created in 2003 and is the federation of local collections. It contains more than 56 000 small molecules and natural compounds synthesised or isolated in different laboratories over the past years. This explains the diversity of the collection. The strength of this initiative is the ability to connect chemists and biologists for the development of hits. This development involves the synthesis of analogues or/and chemical tools to find new targets. These collaborations lead to the identification of new chemical probes. These probes able to modulate a biological function are essential to study biological pathways. They can also be useful for therapeutic applications. This article will describe the major achievements and perspectives of the French Chemical Library.