Centre d’Imagerie Multimodale (US43-UMS2016)

Publications

Année de publication : 2016

Marcel Menezes Lyra da Cunha, Sylvain Trepout, Cédric Messaoudi, Ting-Di Wu, Richard Ortega, Jean-Luc Guerquin-Kern, Sergio Marco (2016 Feb 29)

Overview of chemical imaging methods to address biological questions.

Micron (Oxford, England : 1993) : 84 : 23-36 : DOI : 10.1016/j.micron.2016.02.005 En savoir plus
Résumé

Chemical imaging offers extensive possibilities for better understanding of biological systems by allowing the identification of chemical components at the tissue, cellular, and subcellular levels. In this review, we introduce modern methods for chemical imaging that can be applied to biological samples. This work is mainly addressed to the biological sciences community and includes the bases of different technologies, some examples of its application, as well as an introduction to approaches on combining multimodal data.

Replier

Année de publication : 2014

Guillaume van Niel, Ptissam Bergam, Aurelie Di Cicco, Ilse Hurbain, Alessandra Lo Cicero, Florent Dingli, Roberta Palmulli, Cecile Fort, Marie Claude Potier, Leon J Schurgers, Damarys Loew, Daniel Levy, Graça Raposo (2014 Nov 13)

Apolipoprotein E Regulates Amyloid Formation within Endosomes of Pigment Cells.

Cell reports : 43-51 : DOI : 10.1016/j.celrep.2015.08.057 En savoir plus
Résumé

Accumulation of toxic amyloid oligomers is a key feature in the pathogenesis of amyloid-related diseases. Formation of mature amyloid fibrils is one defense mechanism to neutralize toxic prefibrillar oligomers. This mechanism is notably influenced by apolipoprotein E variants. Cells that produce mature amyloid fibrils to serve physiological functions must exploit specific mechanisms to avoid potential accumulation of toxic species. Pigment cells have tuned their endosomes to maximize the formation of functional amyloid from the protein PMEL. Here, we show that ApoE is associated with intraluminal vesicles (ILV) within endosomes and remain associated with ILVs when they are secreted as exosomes. ApoE functions in the ESCRT-independent sorting mechanism of PMEL onto ILVs and regulates the endosomal formation of PMEL amyloid fibrils in vitro and in vivo. This process secures the physiological formation of amyloid fibrils by exploiting ILVs as amyloid nucleating platforms.

Replier